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CHAPTER 1 

INTRODUCTION 

 

1.1 Cardiovascular Disease 

Despite significant progress in medical therapeutics, cardiovascular disease 

(CVD) remains the leading cause of mortality in the United States and other 

industrialized  nations [1]. Currently, CVD is responsible for more than 2200 

American deaths/day, an average of one death every 39s [2] and it is predicted that 

one in two healthy men and one in three healthy women will develop some form of 

CVD during their lifetime [3].  

Cardiovascular disease is described as a health state that affects the 

cardiovascular system, and includes cardiac disease, vascular disease of the brain 

and kidney, and peripheral arterial disease. Coronary heart disease (CHD) is the 

most common form of heart disease. It occurs when the arteries supplying blood to 

the heart become narrower due to the buildup of plaque, also known as 

atherosclerosis. The site where the plaque is located determines the type of CHD, 

such as coronary artery disease (plaque in the arteries supplying blood to the heart), 

peripheral artery disease (plaque in the arteries supplying blood to the arms and 

legs), and carotid artery disease (plaque in the arteries that supply blood to the 

brain). More serious consequences of plaque formation are myocardial infarction 

and stroke, which can occur when blood flow to the heart, or brain, respectively, is 

severely reduced or discontinued due to the hardening and narrowing of the arteries.  

Other conditions such as arrhythmia, cardiomyopathy, congenital heart defects, 

and hypertensive heart disease are also considered part of CVD, but they are not 



www.manaraa.com

2 
 

 

caused by plaque formation, which is mainly associated with an imbalanced dietary 

regimen.   

The prevalence of CVD is expected to increase in the next decade, mainly due to 

increase in sedentary lifestyle, obesity, and aging of the population, which will 

increase the incidence of atherosclerosis, stroke, acute myocardial infarction, and 

other CVD related diseases. In 2008, the approximate total cost of CVD treatments 

was nearly US$ 500 billion, placing CVD as a top expensive disease to both human 

lives and finances [1]. Moreover, it is predicted by the American Heart Association 

that by 2030, 40.5 % of the US population will be diagnosed with some form of CVD  

and the total direct medical costs of CVD are projected to triple, from $273 

billion/year to $818 billion, while the indirect costs will increase by 61% [4].Therefore, 

it is imperative that effective measures need to be applied in prevention, early 

detection, and management of CVD, as this is a very costly disease in terms of both 

lives and economics.  

1.2 Lipoprotein Metabolism   

Cholesterol molecule was first isolated from gallstones in 1789, and since then, it 

became one of the most extensive topic for research [5].  Found in all cells of the 

body, cholesterol is a waxy steroid metabolite that is responsible for the structure, 

permeability and fluidity of the cell membrane of higher eukaryotic systems. In 

addition, cholesterol serves as a precursor for the biosynthesis of vitamin D, bile 

acids, and steroid hormones [6]. Cholesterol, itself, is scattered amongst cellular 

membranes, accounting for  20-25% of the lipid molecules found in the plasma [5]. 
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Lipids in general, including cholesterol, are not soluble in blood; therefore they 

are associated to proteins for transport in an aqueous media, becoming complex 

aggregates known as lipoproteins. Cholesterol, TG, and phospholipids are the major 

lipids that are used for hormone synthesis, formation of the cell membrane, and 

production of bile acid. Within the circulation, these aggregates are in a state of 

constant flux, changing in composition and physical structure as the peripheral 

tissue takes up the various components before the remnants return to the liver.  

The most abundant lipid constituents are TG, phospholipids (mostly 

phosphatidylcholine and sphingomyelin), cholesterol esters, free cholesterol, and 

proteins known as apolipoproteins (Apo). The different protein components found in 

lipids determine the overall structure and metabolism, and the interactions with the 

receptor molecules in liver and peripheral tissues. However, the nomenclature is 

based on the relative densities of the aggregates following ultracentrifugation, taking 

into account the diameter of the broadly spherical particles. Hence, the main groups 

are classified as chylomicron, very low density lipoprotein (VLDL), low density 

lipoprotein (LDL), and high density lipoprotein (HDL) (Figure 1.1) [1, 7]. Furthermore, 

based on advanced separation procedures, intermediate density lipoprotein (IDL) 

and subclasses of HDL (HDL1, HDL2, HDL3, etc.) are often defined.  
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Figure 1.1 Metabolic Pathways of Endogenous and Exogenous Lipoproteins. 

Abbreviations: Apolipoprotein A, A; Apolipoprotein B, B-48, B-100; 

Apolipoprotein C, C; Apolipoprotein E, E; Hepatic triglyceride lipase, HTGL; High 

density lipoprotein, HDL; Lipoprotein lipase, LPL; Lecithin-cholesterol 

acyltransferase, LCAT; Low density lipoprotein, LDL; Very low density 

lipoprotein, VLDL [7] 
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A. Chylomicrons are the largest particles amongst all lipoproteins. Dietary 

cholesterol and TG are transported to different parts of the body from the intestine 

by chylomicrons, which are mediated by the enzyme lipoprotein lipase (LPL). 

Chylomicrons remain present in the plasma for three to six hours after consuming a 

meal, after which they are recycled. The remnant chylomicrons, containing the 

dietary cholesterol, Apo E and B 48 are cleared from the circulation by the liver via a 

receptor- mediated process.  

B. VLDL molecule is secreted into circulation by the liver and contains mostly TG 

of the remnant chylomicrons, cholesterol, cholesterol esters and specific 

apolipoproteins (B100, C, and E). As the transport of VLDL molecules is 

progressing, the core of TG is reduced and phospholipids on the surface are 

transferred to HDL. Skeletal, cardiac, or adipose tissue receive TG from VLDL and 

use it for energy, or in the case of adipose tissue, for storage. Further, a large 

portion of the VLDL remnants are converted to LDL with additional loss of TG. Apo 

B100 and E are the remaining proteins required for recognition of the VLDL 

remnants, and LDL by the LDL receptors in the liver.  

C. LDL molecules are the major carriers of cholesterol from the liver to the 

peripheral tissues, where the receptors recognizing Apo B100 capture the particles. 

Within these tissues, the cholesterol esters are hydrolyzed to release free 

cholesterol, which is further integrated into the plasma membrane and utilized as 

desired. It is widely known that high levels of LDL cholesterol increase CVD risk due 

to the atherosclerotic plaques deposited in the arterial wall.  
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D.  HDL molecules contain higher amounts of proteins and a lower concentration 

of cholesterol and lipids, as compared with the other lipoproteins. Their primary 

function is to enable secretion of cholesterol from cells, esterification of cholesterol in 

plasma and relocating it to other lipoproteins, and the return of cholesterol to the 

liver from peripheral tissues for excretion. This process is known as ‘reverse 

cholesterol transport’ (RCT) and has the ability to protect against excess cholesterol 

accumulation and oxidative damage (Figure 1.2) [8]. Moreover, HDL cholesterol is 

thought to have antioxidative, anti-inflammatory, anticoagulation, platelet anti-

aggregatory, and profibrolytic effects [9], which can alleviate the harm generated by 

increased levels of LDL cholesterol.  

The nascent HDL particles are synthesized in the extracellular space of the small 

intestine and liver as protein-rich molecules. Apo A1 is the major protein component 

of HDL in plasma. The protein promotes cholesterol efflux from tissues to the liver for 

excretion, and it is a cofactor for lecithin: cholesterol acyltransferase (LCAT), which 

is responsible for the formation of most plasma cholesteryl esters. A specific 

transporter molecule, ATP-binding cassette transporter, sub-family A, member 1 

(ABCA1) facilitates the transfer of phospholipids and cholesterol to lipid-poor 

apolipoproteins, especially Apo A, in the nascent HDL particles. Increased levels of 

ABCA1 imply that an organism may resourcefully collect cholesterol deposits from 

arterial walls and transport it back to the liver.  
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Figure 1.2 HDL/ Reverse Cholesterol Transport Pathway  

Abbreviations: ATP-binding cassette transporter, sub-family A, member 1, ABCA1; 

ATP-binding cassette sub-family G member 1,ABCG1; Cholesteryl ester transfer 

protein, CETP; High density lipoprotein, HDL; Lecithin-cholesterol acyltransferase, 

LCAT; Low density lipoprotein, LDL; Low density lipoprotein receptor, LDL-R; 

Scavenger receptor class B1, SRB1 [8] 
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In order for RCT mechanism to function properly, HDL has to bind to the 

receptors on the extra-hepatic and hepatic cells. Through its Apo E component, HDL 

is able to attach to LDL receptors in addition to HDL receptors. Hence, at its receptor 

site, HDL is able to compete with LDL. Another key molecule involved in RCT is 

scavenger receptor class B1 (SRB1), which has the ability to increase HDL-

mediated cholesterol efflux. SRB1 functions in hepatocytes to cleave cholesterol 

esters off transporter molecules; hence they can be re-metabolized by the liver.  

In addition, cholesterol esters of HDL can be transferred to VLDL and LDL by the 

action of cholesterol ester transfer protein (CETP). This enzyme allows for excess 

cellular cholesterol to be returned to the liver by the LDL-receptor pathway [10], as 

cholesterol esters can be exchanged for TG by CETP from Apo B containing 

lipoproteins to HDL and vice versa. Overall, in this process, cholesterol is removed 

from the peripheral tissues and carried to the liver. About 30% of the serum 

cholesterol is carried during the RCT process [1]. Thus, within the vascular 

endothelium, if the quantity of cholesterol deposited is reduced, the risk of 

atherosclerosis and formation of fatty plaque is also reduced.  

1.3 Risk Factors 

With respect to heart disease, as with any chronic illness, there are several risk 

factors-modifiable and non-modifiable- linked to the development and progression of 

CVD. The major non-modifiable factors, which cannot be changed, include genetic 

alterations, family history, increasing age, gender (men have higher risk), post 

menopausal, and race (African Americans, Hispanics, native Indians and Hawaiians, 

and some Asians have increased risk when compared with Caucasians). The major 
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risk factors that one can modify, treat or control by lifestyle modifications and/or 

medicine include diabetes, high blood pressure, poor diet and sedentary routine, 

obesity, smoking, stress, and abnormal levels of blood lipids (partially modifiable, not 

related to genetic aberrations). A combination of any two or more of the risk factors 

highly increases the development of atherosclerosis and other related coronary 

disease.   

1.3.A Diet 

Diet is an important determinant of chronic disease risk, particularly heart 

disease. It represents a significant component of any strategy to achieve population 

level reductions in the burden of CVD. Although drug treatment, such as lipid-

lowering statin drugs, may be necessary among individuals at high risk of CVD or 

with genetic alterations, adoption of a healthy diet is the preferred method in the 

general population in order to prevent or delay the onset of the disease.   

The primary dietary determinants of hypercholesterolemia are fats, in particular, 

saturated and trans fatty acids, and dietary cholesterol. Over the last few decades, 

various studies have confirmed that the level of saturated versus unsaturated fatty 

acids in one’s diet can play a direct role in CVD [11]. Valuable results were 

published from the epidemiological studies of the seven countries [12], the 

Framingham studies [13], as well as the Japanese individuals migrating from Japan 

to Hawaii and California [14]. All of these investigations demonstrated the 

environment’s influence on plasma cholesterol levels, in particular the impact of the 

relative levels of saturated versus unsaturated fatty acids in one’s diet. Several other 

studies have also experimented with the substitution of various fats to observe the 
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outcome on plasma cholesterol levels. It was noted that when polyunsaturated fatty 

acids were substituted for saturated fatty acids, patients experienced reduced 

plasma cholesterol levels, and had a decreased rate of death and repeat myocardial 

infarctions [15, 16].  

In addition, while Brown and Goldstein [17] are mostly famous for their work on 

mechanistic action of LDL receptors, they have also researched the mechanisms 

behind the effects of unsaturated fatty acids to lower plasma cholesterol levels. 

Transcription factors, such as sterol response element binding proteins (SREBP) 

raise cholesterol, fatty acid, and LDL receptor biosynthesis. SREBP transcription 

and SREBP precursor proteins are reduced when unsaturated fatty acids are 

present in the diet. Additionally, another mechanistic process of certain unsaturated 

fatty acids is to control peroxisome proliferator activated receptor alpha and 

carbohydrate regulatory element binding protein/Max-like factor X function, which 

can result in decreased concentration of plasma lipids [18-20], and may also 

influence lipoprotein catabolism independently of the LDL receptor [21]. 

Like the role of dietary fat in regulating plasma cholesterol levels, the importance 

of dietary cholesterol absorption in regulating plasma and body cholesterol 

homeostasis has been shown in numerous epidemiological and clinical studies. 

Populations consuming dietary cholesterol less than 100 mg per day along with low-

fat diets have low LDL cholesterol levels and low incidence of coronary disease [22, 

23]. The National Cholesterol Education Program guidelines recommend dietary 

cholesterol to not exceed more than 300 mg per day. 

      1.3.B Obesity 
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Excess adiposity and obesity are the root cause of numerous diseases, which 

contribute to a considerable lifelong morbidity and are highly linked to cardiovascular 

mortality. The rapid increase in obesity prevalence is most of the time not due to 

genetic modifications, but rather is a societal disparity between physiology and 

environment, due to abundance of food and a sedentary lifestyle.  Obesity, mainly 

central obesity, represents a major culprit of the metabolic syndrome, which includes 

insulin resistance, hypertension, diabetes mellitus, non-alcoholic fatty liver disease, 

and dyslipidemia, all risk factors for development of CVD [24, 25].  

The risk relationship between obesity and atherosclerosis was seen in young 

men (15 to 34 years old) in the PDAY study [26], as well as in an older population 

(35 to 54 years old) [27], suggesting that risk factors such as obesity, may operate 

continuously as atherosclerosis progresses.  Among the traditional risk factors, the 

dyslipidemia may to some extent be attributable to the increased release of free fatty 

acids from adipose tissue, which may consecutively increase very low density 

lipoprotein (VLDL) production and plasma triglycerides (TG). The release of free 

fatty acids may also contribute to insulin resistance, which has been highly 

associated with atherogenic pro-inflammatory and pro-oxidant vascular alterations 

[28, 29]. 

Apart from atherosclerosis, heart failure is also more prevalent among obese 

patients, possibly due to the expansion of the blood volume associated with 

expanded adipose tissue mass. Frequently, when hypertension is associated with 

obesity, it can contribute to left ventricular hypertrophy and ultimately heart failure. 
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These correlations warrant future research to learn about the impact of the 

increased adipose tissue accumulation on cardiovascular pathophysiology.  

1.3.C Hypertension   

Hypertension is one of the most common disorders worldwide and it ranks as the 

leading chronic risk factor for mortality, accounting for 13.5% of all deaths [30]. High 

blood pressure is responsible for half of all strokes and ischemic heart disease, and 

can affect many other CVD, including atherosclerosis, CHD, and renal disease. 

Moreover, in overweight patients the negative impact of hypertension on CVD is 

more significant as compared with normal weight individuals [31]. 

A diet high in sodium and low potassium represents the most important 

environmental factor affecting hypertension. The American population consumes an 

average of more than 6 g of sodium daily and more than one third of the population 

has hypertension [17]. In contrast, in communities were the sodium intake is less 

than one gram per day, the prevalence of hypertension is about 1 % of that in 

industrialized societies.  

The American Heart Association set the recommendations for sodium and 

potassium consumption based on the DASH study (Dietary Approaches to Stop 

Hypertension), which represents a diet based on grains, low-fat dairy, fish and 

poultry, and rich in fruits and vegetables. The DASH study showed that the blood 

pressure was reduced in subjects following this diet, as compared with the average 

American diet [32].  

1.2.D Dyslipidemia 
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Abnormal lipoprotein metabolism is often observed as a secondary effect of 

diabetes mellitus, obesity, hypothyroidism, or kidney disease, while only few 

individuals carry inhered defects in lipoprotein metabolism, such as hyper- or 

hypocholesterolemia. The term dyslipidemia refers to abnormal plasma lipid levels, 

including hypercholesterolemia (increased levels of serum LDL cholesterol), 

hypertriglyceridemia (increased levels of TG), and low levels of high-density 

lipoprotein (HDL) cholesterol. The combination of low HDL cholesterol,  high LDL 

cholesterol, and hypertriglyceridemia is referred to as the lipid triad, and along with 

other non-lipid risk factors comprise the metabolic syndrome, which is  highly 

correlated to increased risk for CVD [33]. Accordingly, the TC to HDL cholesterol 

ratio is a more significant  predictor of risk than TC alone [34].  

The role of lipoproteins in the metabolism of TG and cholesterol in relationship to 

CVD has been highly discussed over the last decades. Numerous epidemiological 

studies have shown that high concentrations of plasma TC and LDL cholesterol are 

associated with an increased risk for atherosclerosis [35]. A meta-analysis 

conducted on 90,000 patients showed that 1 mmol (39mg/dL) reduction in the 

concentration of LDL cholesterol resulted in a 23% reduction in cardiovascular 

events [36].  

The Framingham Heart Study was a significant project that revealed the 

association between development of CVD risk and plasma lipid abnormality. This 

study began in 1948 and monitored over ten thousand subjects that had several risk 

factors for CVD, in particular an abnormal blood lipid profile [34]. Since the first 

results of the Framingham Heart Study were published, various trials have been 
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conducted to analyze the impact of these factors on occurrence of CVD, with an 

emphasis on serum cholesterol levels [1].   

Over the last decade, there have been various advancements to control and 

minimize the risk and incidence of CVD, particularly enhancing and monitoring 

plasma lipid profiles. The Adult Treatment Panel (ATP) has been set up by the 

National Cholesterol Education Program (NCEP) to provide guidelines for 

maintaining optimal cholesterol levels. ATP III, originally published in 2002 and 

updated in 2004, is the most current panel as warranted by advances in the science 

of cholesterol management [1]. 

Apart from TC and LDL cholesterol, numerous epidemiological studies suggest 

that low levels of HDL cholesterol (<1.0 mmol/L or 40mg/dL) represent a significant 

risk factor for cardiovascular events, independent of LDL cholesterol levels [37], 

whereas high levels of HDL cholesterol act as a protective agent against CVD [38]. 

A decrease in HDL cholesterol levels can be due to one or a combination of the 

known non-modifiable risk factors (e.g. genetic aberrations) or the modifiable risk 

factors, such as obesity, malnutrition, and different drugs, like anabolic steroids, 

beta-blockers, progestins, and isotretinoin [1].  It has also been shown that often a 

low HDL cholesterol level is associated with an increase in TG level. This high TG - 

low HDL cholesterol combination, in part also explains the risk generated by 

abdominal obesity. Due to the low-high state of HDL cholesterol and TG levels, 

respectively, this combination is characteristic of insulin resistance syndrome, and 

provides a link between obesity, diabetes, and dyslipidemia.  
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1.4 Current Therapies  

1.4.A Statin Drugs 

Since a major risk factor for CVD is elevated LDL cholesterol, numerous studies 

have been conducted to identify methods to lower this lipoprotein. Most common 

therapy used for lowering LDL cholesterol focuses on hydroxyl-methylglutaryl 

coenzyme A (HMG-CoA) reductase inhibitors, also known as statins [1]. This class 

of drugs was developed to compete with HMG-CoA for binding at the catalytic site of 

HMG-CoA reductase and therefore to decrease the synthesis of cholesterol [39]. 

There are several statins on the market that are widely prescribed for 

hypercholesterolemic patients to achieve guideline-recommended LDL cholesterol 

goals and can reduce the risk of initial and recurrent cardiovascular disease by 20-

30 % [40].  

However, statins are known to cause severe adverse effects such as heartburn, 

diarrhea, flatulence, nausea, vomiting, headache, rhabdomyolysis, myalgia, 

myositis, and raised level of liver enzymes [1]. Also statins are not suitable for 

patients with increased levels of serum transaminase, active liver disease, or if 

pregnant or lactating. Also, interaction with other medications needs to be closely 

monitored when therapy with statins occurs for extended periods of time [1]. 

1.4.B Bile Acid Sequestrants Agents (BASA) 

Bile acid sequestrants agents (BASA) are another class of drugs for decreasing 

the levels of LDL cholesterol. They generally work by interfering with the 

enterohepatic recirculation. Bile acid sequestrants bind bile acids in the gut, forming 

insoluble complexes which are excreted. By blocking enterohepatic recirculation and 
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diminishing the liver of ready-made bile acids, the liver increases synthesis of 

cholesterol and up-regulates LDL receptors, which results in increased clearance of 

LDL cholesterol from the systemic circulation. As a new generation of BASA therapy, 

Colesevelam is considered to be a high-capacity agent, with four to six times 

increased potential as compared with older BASA. It can reduce LDL cholesterol in a 

dose-dependent manner [41].  Although the side effects are somewhat of a lesser 

degree as compared with the old generation of BASA, some gastrointestinal 

distress, such as abdominal pain, constipation, heartburn, and bloating does occur.   

1.4.C Cholesterol Absorption Inhibitors (Ezetimibe) 

Ezetimibe, similar to BASA, blocks the exogenous pathway of cholesterol 

metabolism and can lower LDL cholesterol to a similar extent as Colesevelam. It 

works by inhibiting the absorption of ingested cholesterol by about 50% [42]. 

However, because Ezetimibe is extensively metabolized in the liver and it is 

systemically absorbed, there are concerns with regards to the safety of 

administering the drug during pregnancy, to nursing mothers and children, and other 

patients with impaired liver function. Some of the noted side effects associated with 

Ezetimibe include gastrointestinal distress, headache, fatigue, and myalgia.  

1.4.D Niacin 

Niacin (Nicotinic acid) is a well known therapy to increase HDL cholesterol, while 

decreasing the LDL and TC in plasma. Niacin inhibits the release of free fatty acids 

from adipose tissue and the production of TG in the liver. In addition, niacin also 

directly inhibits the hepatocyte microsomal diacylglycerol acyltransferase-2 

(DGAT2), the key enzyme involved in the conversion of diacylglycerol to 
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triglycerides. Decreased synthesis of TG results in intrahepatic degradation of Apo 

B, with less VLDL available to produce LDL cholesterol. Moreover, niacin can 

decrease the size of the VLDL particle, which affects the rate of exchange of TG for 

cholesterol mediated by CETP. The acquired excess triglycerides in the large LDL 

particles undergo rapid hydrolysis by hepatic lipase, which leads to the formation of 

small dense LDL particles.  

Thus, the goal of niacin therapy is to reduce LDL and TC levels, as well as 

increase levels of HDL cholesterol, overall improving the lipoprotein plasma profile. 

However, multiple adverse effects, such as nausea, abdominal pain, flushing, and 

pruritus have been reported, and the poor patient adherence make this a non 

desirable drug. Furthermore, several clinical studies have advised that therapy 

involving nicotinic acid in high doses caused glucose intolerance in patients with 

abnormal glucose metabolism [43], as well as high toxicity levels and gastrointestinal 

disturbance [40]. Nicotinic acid therapy has also been found to decrease insulin 

sensitivity and increase plasma glucose levels [44, 45]. 

1.4.E ApoA1 Milano Complex  

The importance of Apo A1, the main structural protein of HDL (70%) has been 

well established, as it plays a major role in RCT, removing cholesterol from 

macrophages and returning it to the liver for excretion in bile. Previous animal 

studies have shown that augmenting Apo A1 increases HDL cholesterol levels and 

decreases atherosclerosis and cardiovascular events [1]. The recent research 

studies investigated a recombinant Apo A1 Milano complex, which was shown to 
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increase HDL cholesterol levels in patients with acute coronary syndrome [46], but 

this is an invasive treatment requiring intravenous dosing.  

Other Apo A1 targeting therapies are under investigation, including synthetic 

peptides such as L-5F, D-4F, and ETC-642, which are intended to imitate the 

favorable effect of Apo A1 in promoting cholesterol efflux from macrophages, 

decrease inflammation, and progression of atherosclerosis [47-50]. However, the 

application of these peptides is limited since the administration of the treatment is 

intravenous, and the peptides have a complex structure and are very expensive to 

produce. Therefore, a different approach to increase Apo A1 remains to be 

discovered. 

Recently, several new therapies targeting lipoproteins have been applied in 

clinics, either as monotherapy or in combination with statins, but severe side effects 

and poor outcome warrant more research. A recent analysis showed that during 

1999-2006 the prevalence of hypercholesterolemia and related factors remained 

stationary among the US population, despite the increase in usage of cholesterol 

lowering medications [51]. 

Thus there is an acute need for a new therapeutic approach that can reduce the 

circulating cholesterol levels and improve the HDL/LDL cholesterol ratio significantly, 

without the incurrence of adverse effects. It has been suggested that LDL and HDL 

cholesterol should be adjusted simultaneously in order to prevent CVD. The risk for 

a cardiovascular event can be decreased by nearly 1% for each1% reduction in LDL 

and by more than 1% for each 1% increase in HDL, suggesting that improvement in 
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both lipoprotein fractions has a synergistic effect as compared with either lipoprotein 

alone [52].  

There is also a further need of replacing current statin therapy and regulating 

cholesterol at a gene signaling level, which the new emerging therapies are 

targeting. Many studies are underway to identify new choices for therapies that can 

decrease the LDL cholesterol, while increasing the HDL cholesterol with minimal 

side effects. One of the targeted therapies currently being studied is inhibition of 

CETP [40]. Promising results were obtained by partial inhibition of CETP [1], and if a 

suitable drug can be formulated, this therapy can be successful in clinical 

management of hypercholesterolemia.  

1.4.F Omega-3 Polyunsaturated Fatty Acids 

Over the last decade, several other treatments intended to improve the lipid 

profile have been developed, especially naturally derived as food supplements. 

Omega-3 polyunsaturated fatty acids can reduce the production and secretion of 

VLDL particles, and increase TG removal from VLDL and chylomicron particles via 

the upregulation of lipoprotein lipase. Several studies have shown that when doses 

higher than 3g/day of omega-3 fatty acids were administrated, TG were reduced by 

32% [53, 54]. However, not enough statistics are known about the decrease in CVD 

risk, especially in woman, since most studies on fish consumption and omega-3 fatty 

acids were conducted in men. Also, the overall lipid profile was improved only when 

omega-3 fatty acids supplements were given in combination therapy with statin 

drugs, reducing some major coronary events in patients followed for 4.6 years [54]. 

1.4.G Other Natural Compounds  
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Since most synthetic drugs designed to treat hypercholesterolemia have so far, a 

low success rate in decreasing the rate of cardiovascular events, most therapeutic 

interventions include an aggressive change in diet and lifestyle, alone or in 

combination with drug therapy. Some approaches include consuming green tea [55], 

plant sterols [56], soluble fiber [57], cocoa and dark chocolate [58] have produced 

promising results and warrant further investigation.  

More recent studies have found that the probiotic bacteria, especially bile salt 

hydrolase (BSH)-active probiotic bacteria, have demonstrated their ability to 

decrease cholesterol levels in several randomized clinical trials [59-62]. It was 

reported that an increased activity of BSH can increase intraluminal bile acid 

deconjugation, resulting in raised levels of circulating deconjugated bile salts, which 

in turn decrease cholesterol absorption by enterocytes [63, 64]. Various algal and 

seaweed extracts have also been studied to determine their ability to decrease 

hypercholesterolemia and avoid cardiovascular events. Several scientists have 

reported that seaweeds, isolated algal polysaccharides and their water-soluble 

fractions demonstrated hypocholesterolemic effects in experimental animals [65, 66]. 

Recent research conducted by Bocanegra et al showed that the lipoprotein profile of 

male Wistar rats was significantly improved when fed freeze-dried algae added to 

their diets for 3 weeks, reducing the TC, TG, phospholipids, and protein contents of 

the various lipoprotein fractions [67]. 

1.4.H ProAlgaZyme (PAZ)  

PAZ algae infusion is the fermentation product of a blend of freshwater 

organisms, including red and green algae [68]. It contains less than 100 ppm of total 
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dissolved solids, consisting of a mixture of approximately 90% salts (free of heavy 

metals at a detection limit of < 0.1 ppm), while the remaining 10% is a proprietary 

mixture of organic constituents. In a preliminary study, Oben et al  [68] evaluated the 

effects of PAZ on body weight, body mass index, blood lipids, fasting blood glucose 

levels, and markers of inflammation in individuals with the metabolic syndrome. The 

results showed a significant beneficial outcome on the various parameters analyzed, 

including the lipid profile, suggesting that PAZ could be an effective method for 

lowering the risk of developing CVD.  

1.5 Metabolomics 

As observed in recent reports regarding therapies for hypercholesterolemia and 

risk for CVD, it was concluded that the lipid profile alone does not provide a 

complete picture of the disease progression. Analysis of a multifactorial disease, 

such as atherosclerosis and other forms of CVD, using a limited number of 

biomarkers can lead to inaccurate diagnosis and treatment regimes, weakening the 

advancement of new therapies. In contrary, the omics-based approaches 

(metabolomics, in particular) have allowed scientists to characterize, at the 

molecular level, complex biological systems and their changes in pathological 

processes [69, 70] providing an excellent tool for examining phenotypes using 

hundreds of metabolite descriptors. 

It has been determined that the human genome  encodes approximately 30,000 

genes, which are responsible for translating more than 100,000 distinct proteins [70]. 

The complete set of all chromosomes and genes is referred to as the genome, a 

term widely used in research for more than seven decades. However, the ‘omic’ 
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technology was not introduced until 1986 by Thomas Roderick [71]. The science of 

the genomes of organisms was implemented to provide information about the 

function of different genes and to compare them among multiple organisms. 

 Moreover, along with genomics, the science of proteomics signifies the 

comprehensive study of proteins produced by an organism during its lifetime based 

on its genome. However, the proteome of an organism might change due to several 

factors, including cellular environment, biochemical interactions, while the genome 

remains constant. Also, newly translated proteins might undergo various 

modifications (such as glycosylation, phosphorylation, degradation, alternative 

splicing) and might not be part of the cellular processes or the organism’s 

metabolism. Thus, it is more accurate to study proteins or metabolites that have 

been part of biochemical and cellular processes, providing an accurate state about 

the changes within the system under different conditions, including environment, 

drugs, disease, and toxicity. These discoveries lead to the emerging field of 

metabolomics, the latest ‘omic’ approach, which measures changes in populations of 

low molecular weight metabolites under a given set of conditions [72]. 

Metabolomics is a comprehensive and quantitative study of the complete set of 

intracellular and extracellular metabolites produced as an end product of an 

organism’s metabolism [70]. This technique can be utilized to investigate the effect 

of environmental stress or chemical composition of the organism, metabolite pattern, 

effect of a drug, or disease progression. The analysis can be performed using cells, 

tissues, body fluids, such as urine, saliva, plasma, and tears [73], having the option 

to perform it as a non-invasive procedure. One of the important attributes of 
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metabolomics is the possibility of identifying a molecule or a set of molecules 

responsible for changes in the physiology of an organism under a particular stress. 

Metabolite profiles can be regarded as key indicators of normal phenotype and 

pathology, providing novel information about new biomarkers, drug interactions, 

toxicological insult, nutritional status, and the effects of these factors on the genome.  

The human metabolome is directly influenced by exogenous (such as diet, drugs, 

physical status, and stress) and endogenous factors (such as body composition, 

age, gender, and health status), which vary amongst individuals (Figure 1.3). 

Metabolomics technology can bring new insight into personalized medicine and 

might help answer questions related to specific metabolites by integrating or 

connecting different biochemical pathways. Qualitative and quantitative metabolomic 

analyses provide a view of the biochemical status of an organism at a definite time, 

under specific conditions. Thus, the extension of this technology to human medicine 

and human nutrition offers enormous potential, with the possibility of linking 

metabolomics with the wider elements of nutrigenomics.  
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Figure 1.3 Exogenous and Endogenous Factors Likely to Influence the Human 

Nutritional Metabolome [74] 
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1.6 Nuclear Magnetic Resonance and Mass Spectroscopy  

Since the majority of the metabolites are present virtually in all tissues and fluids, 

the concentration of the metabolites is the major factor that distinguishes different 

phenotypes [75]. Therefore, the techniques to analyze the samples and process the 

acquired data must be highly specific and accurate. At present, with rapid advances 

in analytical chemistry technologies, including nuclear magnetic resonance (NMR) 

spectroscopy and mass spectrometry (MS), the capacity of accurately identifying 

small metabolites has become easier.  

There are different types of MS techniques that can be used, including time-of-

flight (TOF) MS, tandem quadruple (TQ) MS, which can be combined with liquid 

chromatography, gas chromatography or capillary electrophoresis, as a useful 

analytical tool for metabolomics [76-78]. While MS technology is more sensitive as 

compared with NMR, the disadvantage is that MS does not confer a uniform 

detection, caused by variable ionization efficiency. Also, MS based techniques 

require extensive preparation of the sample before analysis, such as extraction and 

derivatization, which can alter the composition of the sample and can lead to invalid 

data and conclusions [79].  

The NMR technique is based on the magnetic properties of atomic nuclei, usually 

hydrogen nuclei (1H NMR), but 13 C, 31 P, 15 N, and 19 F are also commonly used. The 

identification of different atomic nuclei is based on their resonance frequencies, 

which are dependent on their locations or environment in the molecule [80]. The 

intensity of the NMR spectrum changes linearly with the concentration of the 
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compound present. [81]. Thus, signal intensities give direct information about the 

relative concentrations of different compounds in a complex mixture.  

The major advantage of using NMR spectroscopy is its high reproducibility (> 

98%), ability to analyze both liquid and solid samples, tissues and cell extracts [82], 

and it can help in the identification of unknown metabolites. NMR spectroscopy can 

fingerprint an entire biological sample, requiring minimum sample size and sample 

preparation time, while evaluating the entire metabolic status of an organism. 1H 

NMR metabolomics approach has been largely used with great success in 

identification of biomarkers and monitoring the effects of biological stressors [83], 

and more recently it has become an important tool for diagnosis and treatment of 

chronic diseases, such as obesity, diabetes and CVD [2].  

An innovative study conducted by Brindle et al in patients with CVD identified 

characteristic plasma metabolites that were different in individuals with 

angiographically normal coronary arteries [84]. This discovery could displace the 

necessity to perform angiography, an invasive and time consuming procedure. 

Comparing patients with triple vessel disease with controls, this metabolomics 

technique was able to predict the presence of coronary disease with a specificity of 

93% and a sensitivity of 92% [84]. However, when these data were reproduced, after 

normalization by gender and statin drug therapy, it was shown that it can only predict 

for 61% of the patients [85]. Still, while 1H NMR is considered a poor predictor on a 

per sample basis, perturbations in specific metabolites associated with the metabolic 

syndrome have been identified. Numerous studies have followed and acknowledged 
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changes in plasma profiles, in particular associated with alterations in the lipoprotein 

particles, insulin resistance and atherosclerosis [86-88].  

Metabolomics, despite the smaller expected size of the metabolome, compared 

with the other ‘omics’ approaches, generates an enormous quantity of data. Analysis 

and interpretation is a critical step that could otherwise lead to erroneous 

conclusions. Thus, the choice of the most appropriate statistical analysis is crucial, in 

order to extract the maximum amount of accurate biological information from the 

data set. Although, the area of developing sophisticated statistical tool is still in 

progress, a number of techniques are available.  

1.7 Multivariate Data Analysis (MVDA) 

MVDA is a powerful tool for the analysis of data sets containing a large number 

of variables. It visualizes the correlation between variables in complex or large data 

sets (e.g., thousands of signals in NMR spectra) in relation to a target variable such 

as disease status, diet intervention, or environmental influence.  

Principal Component Analysis (PCA) 

PCA is a multivariate projection method designed to extract and display the 

systemic variation in the data matrix X (the table of integrals from NMR plasma 

samples). This is an unsupervised analysis, which implies that the software has no 

prior knowledge about the data matrix [89]. This method enables differentiation 

between samples based on their metabolites composition. In PCA, the data sets of 

related large variables are transformed into small uncorrelated variables known as 

principle components (PC).  This transformation is defined so that the first PC has 

the largest possible variance (accounts for as much of the variability in the data as 
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possible), and each succeeding component has the highest variance possible under 

the constraint that is orthogonal to the preceding component.  

The data set is visualized as a PCA score plot, where each score represents one 

observation, such as one NMR spectrum (one sample/animal). The observations will 

be grouped together or scattered based on the similarities and/or dissimilarities in 

their metabolomic profile. The contribution of each individual variable to PC can be 

calculated as a loading plot. The corresponding loading plot will provide information 

about the part of the spectrum that is responsible for the similarities and/or 

dissimilarities in the data set. The specific region of the spectrum that is responsible 

for the separation between the groups can be located using this method.  

Partial Least Square (PLS) and PLS- Discriminant Analysis (PLS-DA) 

PLS is a regression extension of PCA, which is used to connect the information 

in two blocks of variables, X and Y. The data from the metabolomics analysis (X 

parameter) can be correlated with other independently measured factors (e.g. total 

cholesterol, HDL cholesterol, gene expression) keeping these factors as Y 

parameters. PLS helps to determines whether or not a correlation exists between the 

two data sets, which otherwise would be considered unrelated.  

In PLS-DA the data set is distributed into classes and its objective is to find a 

model that separates the classes of observation on the basis of their X-variables, 

while using a hypothetical Y-variable. Both of these methods of analysis are 

supervised, which implies that some information about the data set is provided to the 

software prior to analysis [89]. Taken together, PCA, PLS and PLS-DA give valuable 
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information about the variability and/or similarity of large data sets, which otherwise 

will be an impossible task using standard statistical tools.  

1.8 Metabolite Identification and Quantification (Chenomx) 

Chenomx software represents a metabolite database that helps to identify and 

quantify the concentration of the metabolites by comparing the acquired data set or 

NMR signal intensities to pre-existing signals from a library of compounds with 

known concentration. While MVDA identifies the areas of the spectrum responsible 

for similarities and/or dissimilarities between the groups, it is important to identify the 

metabolites represented by the spectral regions or peaks in question.  

The corresponding metabolites within that range can be easily identified using 

Chenomx NMR 7.6 software (Chenomx Suite, Alberta, Canada). This software uses 

targeted profiling to reduce analysis time, combining advanced analysis tools with a 

compound library of more than 300 common metabolites. Targeted profiling can be 

applied to any NMR spectra of virtually any complex mixture, including urine, blood 

plasma, saliva, and various cell extracts. Chenomx is MVDA independent, but it is 

faster and easier to use once the peaks responsible for the separation between 

groups are identified [81]. 

Profiling of the NMR spectra is accomplished using the Profiler module. 

Essentially, a Lorentzian peak-shaped model of each reference compound is 

generated from the database information and superimposed upon the actual 

spectrum. The linear combination of all modeled metabolites gives rise to the total 

spectral fit, which can be evaluated with a summation line. Once the changes in 

metabolite concentrations have been determined, the pathways affected by the 
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respective metabolites can be identified using online Kyoto Encyclopedia of Genes 

and Genomes (KEGG) database (http://www.genome.jp/kegg).  

Therefore, the metabolite profiling technique has the potential to become an 

essential tool in medicine, which can be applied for diagnosis and treatment of any 

disease. Metabolites can be detected based on any of their physiochemical or 

biological properties, and they can be used as early biomarkers to distinguish 

between healthy and diseased state, toxicity levels, nutritional interaction or other 

factors. Metabolomics approach is a relatively new field in medicine and 

pharmacology, but reveals great promise, which potentially will allow for better 

understanding of human diseases, including CVD. 

For decades, numerous scientists across the globe have been investigating the 

etiology of atherosclerosis and the occurrence of cardiovascular events, such as 

stroke and myocardial infarction. Despite considerable improvements in therapeutics 

of cardiovascular disease, epidemiological data reveal that the mortality rates 

associated with the disease are still on the rise. Recent developments have 

suggested that identifying the changes in the metabolite profiles will grant a higher 

degree of understating of the disease. Because of its excellent capability to analyze 

the metabolome, metabolomics provides a much more comprehensive assessment 

of patient’s health status, in comparison with the measurement of particular 

metabolites. This approach makes metabolomics a great technique for the 

identification, quantification, and development of biomarkers.  

1.9 Aims of Study 
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The aim of the present study is to document the potential effect of PAZ and its 

subfractions on plasma lipid concentrations in a hypercholesterolemic hamster 

model. In a preliminary study, Oben et al [68] evaluated the effects of PAZ on body 

weight, body mass index, blood lipids, fasting blood glucose levels, and markers of 

inflammation in individuals with the metabolic syndrome. The results showed a 

significant beneficial outcome on the various parameters analyzed, including the lipid 

profile, suggesting that PAZ could be an effective method for prevention of CVD. 

However, some inconclusive results were reported by Oben et al [68], such as 

exceptionally large changes observed between week 8 and 10, with some subjects 

experiencing about a two-fold increase in HDL cholesterol. In addition no measures 

of TG or LDL cholesterol were reported at 10 weeks.  

Thus, this study evaluates the efficacy of PAZ as a preventative and therapeutic 

agent in an animal model. Male Golden Syrian hamsters were selected as the 

experimental model since they have been used extensively to study human 

lipoprotein metabolism [90, 91]. It has been noted that in both humans and 

hamsters, the liver has a low rate of cholesterol synthesis and it is the main site for 

plasma LDL cholesterol clearance [92]. 

Hypothesis 

The study hypothesizes that PAZ and/or its subfractions would effectively 

improve the plasma lipoprotein profile. In addition, it is hypothesized that the change 

in the plasma metabolomic profile due to PAZ intervention will reflect the 

improvement in the plasma lipid profile. 

The following specific aims were undertaken to test the hypothesis: 
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AIM 1: To determine the biological activity of complete PAZ and its 

subfractions in a hypercholesterolemic animal model 

The objective of this aim was to test the effectiveness of PAZ and its subfractions 

as a preventative agent in a high fat induced hypercholesterolemic hamster model. 

For this, PAZ and its subfractions were administrated as part of drinking fluid along 

with the dietary (high fat) regimen. Eighty male Golden Syrian hamsters were 

randomized into control (n=20; control diet) and treatment groups (n=60; high fat diet, 

30% calories from fat). Further, the control group was subdivided into water (CW) or 

PAZ (CP) groups (n=10), based on their drinking fluid. The treatment group was 

subdivided into 6 groups (n=10): HW (water), HP (complete PAZ), HF1, HF2, HF3, 

HF4 (4 different subfractions of PAZ obtained by sequential affinity gel 

chromatography). After 4 weeks of treatment, animals were sacrificed and blood was 

collected by cardiac puncture. Hepatic mRNA was extracted and analyzed to 

determine if there were changes in the gene expression related to HDL cholesterol 

metabolism.  

AIM 2: To investigate the change in plasma metabolomic profiles upon 

administration of PAZ and the biologically active fraction (BAF) 

Plasma metabolomic profile using 1D proton NMR was performed to determine 

the changes in metabolite concentrations among animals that received water 

(control), complete PAZ, and the fraction found to be biologically active in Aim1. Data 

were analyzed using multivariate data analysis SIMCA P+ software. Targeted 

profiling was applied to NMR spectra to determine the metabolites that are different 

between the groups of interest. Once these metabolites had been identified and 
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quantified (Chenomx), analysis of the pathways involving the specific metabolites 

was conducted. In addition, metabolomic profile was correlated with the plasma lipid 

profile. 

AIM 3: To determine the therapeutic effect of the biologically active fraction on 

hypercholesterolemia 

The goal of this aim was to determine if plasma lipid profile of animals in a 

hypercholesterolemic state can be improved upon treatment with the fraction found to 

be biologically active in Aim 1. Secondly, this part of the study aimed to determine the 

time course required for the therapeutic effect on lipid parameters. 

Fifty male Golden Syrian hamsters were fed a high fat diet for 4 weeks prior to 

receiving treatment with the biologically active fraction found in Aim 1. Group HW 

from Aim 1 was considered as group T0 (T = treatment) for this study and served as 

control, i.e. animals on high fat diet and water alone. The remaining 40 animals were 

randomized into 5 groups: T3, T7, T10, T14, and T21, and received the biologically 

active fraction for 3, 7, 10, 14, and 21 days, respectively, as their drinking fluid. Each 

group was sacrificed following the same procedure as in Aim 1 for blood and tissue 

collection. Further, hepatic mRNA was extracted and analyzed to determine if there 

were changes in the gene expression related to HDL cholesterol metabolism.  

AIM 4: To investigate the change in plasma metabolomic profiles upon therapy 

with the biologically active fraction  

Plasma metabolomic profile using 1D proton NMR was performed to determine 

the changes in metabolite concentrations after 21 days of therapy, as compared with 

controls. Data were analyzed using multivariate data analysis SIMCA P+ software. 
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Targeted profiling was applied to NMR spectra to determine the metabolites that are 

different between the treatment group (T21) and the T0 group, which served as 

control for this aim. Once these metabolites were identified and quantified using 

Chenomx software, analysis of the pathways involving the specific metabolites was 

conducted. In addition, the metabolomic profile was correlated with the plasma lipid 

profile.  
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CHAPTER 2 

MATERIALS AND METHODS 

2.1 AIM 1: To determine the biological activity of complete PAZ and its 

subfractions in a hypercholesterolemic animal model  

Rationale: The objective was to test the effectiveness of PAZ and its 

subfractions as a preventative agent in a high fat diet induced hypercholesterolemic 

hamster model. For this, PAZ and its subfractions were administrated as part of the 

drinking fluid along with the dietary regimen. Plasma lipid profile was measured 

using enzymatic assays, while lipoprotein distribution was determined by density 

gradient ultracentrifugation. Further, hepatic mRNA expression was also analyzed 

for potential effects on genes involved in HDL/ reverse cholesterol transport.  

2.1.A Animal Protocol and Experimental Design 

Eighty male Golden Syrian hamsters (Mesocricetus auratus), LVG strain were 

purchased from Charles River Laboratories, Wilmington, MA. Upon arrival they were 

8 weeks old and weighed approximately 80 g each. The animals were acclimatized 

and given water and laboratory rodent diet 5001(Lab Diet, Richmond, IN) ad libitum 

for one week prior to the initiation of the experimental regimen. They were housed 

individually in a temperature-controlled room (25°C ) and maintained on a 12-h 

light/dark cycle. They were randomly distributed into control (n = 20, receiving control 

purified diet, Table 2.1) and treatment groups (n = 60, receiving high fat diet, 30% 

calories from fat, Table 2.2). Further, the control group was subdivided into water 

(CW) or PAZ (CP) groups (n=10/group), based on their drinking fluid.  
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Table 2.1 Composition of the Control Purified Diet 

 
Mineral Mix contained the following components: 6,000 g/kg Calcium (Ca); 
3,100 g/kg Phosphorus (P); 6,100 g/kg Potassium (K); 1,500 g/kg; Sodium (Na); 
2,310 g/kg; Chlorine (Cl); 600g/kg Magnesium (Mg); 140 g/kg Iron (Fe); 5.8 g/kg 
Copper (Cu); 3.7 g/kg Manganese (Mn); 23.5 g/kg Zinc (Zn); 0.32 g/kg Chromium 
(Cr); 1.6 g/kg Iodine (I); 0.20 g/kg Selenium (Se); 0.20 g/kg Fluorine (F); 1.20 g/kg 
Cobalt (Co). 
Vitamin Mix contained the following components: 2 g/kg Thaimin HCl; 1.5 g/kg 
Riboflavin; 0.7 g/kg Pyridoxine HCl; 9 g/kg Niacin; 4 g/kg Calcium Pantothenate; 0.2 
g/kg Folic acid; 0.06 g/kg Biotin; 1 g/kg Vitamin B12 (0.1%); 0.4 g/kg Menadione 
Sodium Bisulfite; 1g/kg Vitamin A Palmitate; 10 g/kg Vitamin E Acetate; 0.6 g/kg 
Vitamin D3; 10 g/kg Inositol; 959.5 g/kg Sucrose. Vitamin Mix was used at rate of 
10 g/kg of diet. 

 
 

 

 

 
 

 

 
Ingredient 

 
kcal/gm 

 
grams/kg 

 
Casein 

 
3.58 

 
220 

 
Dextrose 

 
3.8 

 
160 

 
Cornstarch 

 
3.6 

 
460.9 

 
L-Arginine 

 
4 

 
1 

 
L-Tryptophan 

 
4 

 
1.1 

 
Cellulose 

 
0 

 
50 

 
Corn Oil 

 
9 

 
60 

        Mineral Mix 
(#260001) 

 
0 

 
35 

Vitamin Mix 
(# 360001) 

 
3.84 

 
10 

 
Choline Bitartrate 

 
0 

 
2 
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Table 2.2 Composition of the experimental custom purified diet 

  
  Abbreviation: * TBHQ: Tertiary butylhydroquinone    
  

 
Ingredient 

 
kcal/gm 

 
grams/kg 

 
Casein 

 
3.58 

 
110 

Lactalbumin 
 

3.9 
 

110 
 

Cornstarch 
 

3.6 
 

370.2 
 

L-Arginine 
 

4 
 

2.5 
 

L-Tryptophan 
 

4 
 

0.3 

Dyetrose  3.8 175 
 

Cellulose 
 

0 
 

44 
 

Coconut Oil 
 

9 
 

138.6 

Soybean Oil 9 1.4 

TBHQ* 0 0.028 

Cholesterol 0 1 
        Mineral Mix 

(#260001) 
 

0 
 

35 
Vitamin Mix 
(# 360001) 

 
3.84 

 
10 

 
Choline Bitartrate 

 
0 

 
2 
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The treatment group was subdivided into 6 groups (n=10/group): HW (water), HP 

(complete PAZ), HF1, HF2, HF3, HF4 (4 different subfractions of PAZ obtained by 

sequential affinity gel chromatography). Figure 2.1 describes the study design for Aim 

1. Drinking fluid was given at either 5% (HF1, HF2, and HF3) or 20% (HP, HF4) 

concentration (v/v) for 4 weeks. This dose was established based on the previously 

reported dose of 4 oz of PAZ per day in humans [68]. Modifications were made to 

account for body weight and amount of fluid intake per day in hamsters versus 

humans. High fat diet containing 30 % calories from fat (Dyets Inc., Bethlehem, PA) 

was used to induce the rapid hypercholesterolemic state in the hamsters. Body 

weight, food and water intake were recorded weekly. 
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  Male Golden  
Syrian Hamsters  

(n=80) 
 

Control Group 
Regular Purified 

Diet  

Intervention 
Group 

High Fat Diet 

CW 
(Water) 

CP 
(PAZ) 

HF3 
(F3) 

HF4 
(F4) 

HF2 
(F2) 

HF1 
(F1) 

HP 
(PAZ) 

HW 
(Water) 

      Figure 2.1 Study Design for Aim 1 



www.manaraa.com

40 
 

 

Prior to the beginning of the study, PAZ was fractionated by sequential affinity gel 

chromatography (Oxford Biomedical Research, Rochester Hills, MI). Complete PAZ 

was passed through four chromatography columns (2.7 cm x 23 cm; approximately 

90 mL of resin at full capacity) at a flow rate of approximately 6 mL per minute using 

a peristaltic pump (Figure 2.2).  

Column 1 containing a weak anion exchange resin (diethylaminoethyl cellulose) 

captured proteins and on elution resulted in the F1 fraction. Column 2 containing a 

strong anion exchange resin (BioRad AG 1-X8) was designed to capture molecules 

containing carboxyl groups and other negatively charged functionalities, as well as 

negatively charged ions, and the eluate from the column was designated as the F2 

fraction. Column 3 was a strong cation exchange column (Dowex Monosphere 88) 

intended to capture molecules containing amino groups and other positively charged 

functionalities, as well as positively charged ions. Eluate from column 3 was 

designated as the F3 fraction.  

Column 4 (silica gel 90 C18 reversed phase) was a C18 derivatized column that 

binds non polar organic molecules. The eluate from this column was not used in this 

study. Instead, the flow through (labeled as F4), which contains relatively few 

molecules, including polar but uncharged organic molecules, as well as molecules of 

low polarity that were not captured by columns 1, 2, 3, or 4, was assessed for its 

effect on hamster lipid profile. The pH of all fractions was measured and adjusted to 

an approximate value of 7.0, prior to being administrated to the animals.  
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Separation of PAZ into Fractions by Sequential A

 

Sequential Affinity Gel 



www.manaraa.com

42 
 

 

After 4 weeks of treatment, animals were sacrificed and blood, liver, and adipose 

tissue were collected. Hamsters were fasted for 8 hours and anesthetized under CO2 

gas (Metro Welding, Detroit, MI) prior to sacrifice. Blood was collected by cardiac 

puncture with syringes previously rinsed in potassium ethylenediamine tetraacetic 

acid (EDTA) solution (15% w/v) and kept on ice. Plasma was separated and collected 

after centrifugation at 1,000 x g for 15 minutes at 4°C. Liver and adipose tissue were 

collected and immediately flash-frozen in liquid nitrogen for subsequent analysis. The 

weight of the liver was recorded immediately after harvesting.  

2.1.B Plasma Lipid Analysis 

Various enzymatic assays were performed on the collected plasma to determine 

the changes in the lipoprotein concentrations as a result of PAZ and its subfractions 

administration. Plasma TC and TG concentrations were determined enzymatically, 

while HDL cholesterol was measured in the supernatant following precipitation with 

Mg2+/dextran sulfate (Pointe Scientific, Canton, MI). The concentration of non-HDL 

cholesterol was calculated as the difference between the measured TC and HDL 

cholesterol, and included as the sum of VLDL, IDL, and LDL cholesterol. Choline-

containing phospholipids and free cholesterol was also determined enzymatically 

(Wako Chemicals USA Inc., Richmond, VA). The cholesterol ester was determined 

by taking the difference between the total and free cholesterol values. The detailed 

procedures, including modifications to the manufacturer’s protocol are described 

below. 
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Total Cholesterol Assay 

Briefly, 200 µl of 37°C pre-incubated reagent mixed  with 2 µl of plasma sample 

was incubated for 5 minutes at 37°C and read at 490  nm using KC4 software (EL x 

800 microplate absorbance reader, Bio-Tek, Winooski, VT). The reaction was 

carried out in a 96-well assay microplate. Calculations were done according to the 

formula provided in the manufacturer’s protocol and plasma total cholesterol 

concentrations reported as mmol/L. 

Triglyceride Assay  

Briefly, 200 µl of 37°C pre-incubated reagent mixed  with 2 µl of plasma sample 

was incubated for 5 minutes at 37°C and read at 490  nm using KC4 software, EL x 

800 microplate absorbance reader.  The reaction was carried out in a 96-well assay 

microplate. Calculations were done according to the formula provided in the 

manufacturer’s protocol and triglyceride concentrations reported as mmol/L. 

HDL Cholesterol Assay 

For separation of HDL cholesterol, a 100 µl of plasma sample was mixed with 10 

µl of reagent, and after 5 minutes incubation at room temperature, it was centrifuged 

at 2,000 x g for 5 minutes. For determination of the HDL cholesterol concentration, a 

96-well assay microplate was used to mix 200 µl of reagent with 10 µl of 

supernatant, followed by incubation for 10 minutes at 37°C. The plate was read at a 

wavelength of 490 nm using KC4 software, EL x 800 microplate absorbance reader. 

Calculations were done according to the formula provided in the manufacturer’s 

protocol and plasma HDL cholesterol concentrations reported as mmol/L. 
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Ultracentrifugation  

The lipoproteins were isolated by density gradient ultracentrifugation, essentially as 

stated by Chapman et al [93]. For each group, lipoprotein isolations (x 2) were carried 

out using plasma pooled from 4-5 hamsters in 16 x 93 mm ultracentrifuge tubes. 

Lipoproteins were isolated using a Beckman SW-40 rotor (Beckman Coulter, Brea, 

CA) at 35,000 rpm and 15°C for 46 hours [94]. Follo wing ultracentrifugation, 26 x 500 

µl fractions per tube were collected by sequentially pipetting from the top. The total 

cholesterol, triglyceride, choline-containing phospholipids, and free cholesterol 

concentration in each fraction were measured using enzymatic reagents as 

described. The lipoprotein profile and lipoprotein particle size (diameter) for LDL and 

HDL cholesterol molecules were determined, using the following formula [95] : 

R = (nm) =               1.093 (TG) +1.044 (CE)    X (3 X 2.15) 
        0.968 (FC) + 0.97 (PL) + 0.705 (PR) 

 
D (nm) = 2R + 2(2.15) 

In the above formula, TG , triglyceride mass; CE, Cholesterol Ester mass; FC, Free 

Cholesterol mass; PL, phospholipids mass; PR, protein mass; R, radius; D, 

diameter. 

Phospholipids Assay 

Briefly, the color reagent was mixed with the buffer, and 250 µl of the 

reconstituted reagent mixed with 5µl of sample was incubated at 37°C for 5 minutes. 

The reaction was carried out in a 96-well assay microplate and read at a wavelength 

of 570 nm using KC4 software, EL x 800 microplate absorbance reader. Calculations 

were done according to the formula provided in the manufacturer’s protocol. 
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 Free Cholesterol Assay 

Briefly, the content of one bottle of color reagent was dissolved in the buffer 

solution. 200 µl of the reconstituted color reagent mixed with 10 µl of sample was 

incubated at 37°C for 5 minutes. The reaction was c arried out in a 96-well assay 

microplate and read at a wavelength of 570 nm using KC4 software, EL x 800 

microplate absorbance reader. Calculations were done according to the formula 

provided in the manufacturer’s protocol. Further, amount of cholesterol ester was 

calculated by subtracting the free cholesterol from the total cholesterol amount.  

2.1.C Real Time Polymerase Chain Reaction (PCR) for Gene Expression 

Analysis 

Total RNA Extraction  

Total RNA was extracted from liver tissues using miRNeasy Mini Kit (Qiagen, 

Valencia, CA) to determine the changes in the gene expression related to HDL 

cholesterol metabolism. Briefly, 25 mg of previously flash frozen liver tissue was 

homogenized in 700 µl lysis reagent provided by the kit. After 5 minutes, 140 µl of 

chloroform was mixed in the tube, following by centrifugation at 12,000 x g for 15 

minutes at 4°C. The upper aqueous phase was removed , and 525 µl of 100% 

ethanol was added to the tube. The mixture was then transferred into the RNeasy 

Mini columns. RWT and RPE buffers (provided by the kit) were added to the column 

and eluted via centrifugation at 8,000 x g. The total RNA was eluted with 40 µl 

RNAase free H20 and centrifuged at 1,000 x g for 1 minute. It was stored at -80°C 

until further use. 
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Total RNA to cDNA Preparation 

  In summary, 0.4 µg of total RNA was further subjected to reverse transcription 

using the High-Capacity RNA-to- cDNA Master Mix kit (Applied Biosystems, 

Carlsbad, CA). The reaction was carried in a total of 20 µl mixture (4ul of Complete 

Master Mix, 8 µl of total RNA, and 8 µl of nuclease-free H2O) in Master cycler 

(Eppendorf, Hauppauge, NY). The program was set for 5 minutes at 25°C, 30 

minutes at 42°C, 5 minutes at 85°C, and 1 hour at 4 °C. The obtained cDNA was 

further used to perform quantitative PCR to determine the alteration in the gene 

expression due to the diet and treatment intervention. 

Real time RT-PCR Analysis  

  A total of 2 µl of  cDNA was used for each real-time RT-PCR reaction using 

SYBR Green Master Mix (Applied Biosystems, Carlsbad, CA) and MX3005P 

instrument (Strategene, Santa Clara, CA)  to determine the relative transcription 

levels of specific genes (ABCA1, ApoA1, CETP, and SRB1) involved in HDL/reverse 

cholesterol transport metabolism.  The cycle conditions were: 10 min at 95°C 

followed by 40 cycles of incubation at 95°C for 15s  each, then 60°C for 1 min. 

Optimization of primer concentration was performed prior to the experiment to avoid 

accumulation of nonspecific products or primer-dimers. Likewise, non-template 

control (NTC) wells were added to the plate for the same reason. Data were 

analyzed according to the comparative threshold (Ct) cycle method and normalized 

by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) expression in each 

sample. Levels of gene expression were reported as fold differences compared with 

hamsters fed the high fat diet and water. 
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     Table 2.3 Real time RT-PCR Primers 

             Gene                              Primers                                                   Reference 

          CETP                F:5’-AAGGGTGTCGTGGTCAGTTCT-3’                    [96] 
                                     R: 5’-ACTGATGATCTCGGGGTTGAT-3’      
   
          Apo A1               F: 5’-ACC-GTT-CAG-GAT-GAA-AAC-TGT-AG-3’     [97] 
                                     R:5’-GTG-ACT-CAG-GAG-TTC-TGG-GAT-AAC-3’  
                               
          SRB-1                 F:5’- AAG-CCT-GCA-GGT-CTA-TGA-AGC-3’           [97] 
                                      R:5’- AGA-AAC-CTT-CAT-TGG-CTC-CCT-A-3’ 
 
         ABCA1                F:5’-ATA-GCA-GGC-TCC-AAC-CCT-GAC-3’            [98] 
                                     R: 5’-GGT-ACT-GAA-GCA-TGT-TTC-GAT-GTT-3’ 
 

   

Abbreviations: CETP, Cholesteryl ester transfer protein; Apo A1, Apolipoprotein  

A-1; SRB1, Scavenger receptor class B member 1; ABCA1, ATP-binding cassette 

transporter A1 
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2.1.D Statistical Analysis  

All data were expressed as the mean ± standard error (SE). Differences between 

the control and treatment groups were determined using one-way analysis of 

variance tests (IBM SPSS Inc, Chicago, IL). The data were analyzed to determine 

the effect of the algae infusion relative to distilled water, while the animals were fed 

the high fat diet. Statistical significance was defined as P < 0.05.  

2.2 AIM 2: To investigate the change in plasma metabolomic profiles upon 

administration of PAZ and the biologically active fraction   

Rationale: Plasma metabolomic profile using 1D proton NMR was performed to 

determine changes in metabolite concentrations among animals that received water 

(HW), complete PAZ (HP), and the biologically active fraction found in Aim 1. Data 

were analyzed using multivariate data analysis SIMCA P+ software. Targeted 

profiling was applied to NMR spectra to determine the metabolites that are present in 

different concentrations between the analyzed groups. Once these metabolites had 

been identified and quantified using Chenomx software, analysis of the pathways 

involving the specific metabolites was conducted.  

2.2.A  Sample Preparation 

Plasma samples (from Aim 1) previously stored at -80°C were thawed and 

centrifuged at 9,000 X g for 3 minutes. Samples were diluted with deuterium oxide 

(D2O) for proper optimization of the concentration. To these diluted samples a 

reference buffer (NMR solvent) solution of 5 mmol/L disodium-2,2-dimethyl 2 –

silapentane-5-sulphonate (DSS) and 10 mmol/L imidazole in D2O (Sigma-Aldrish, 

Mississauga, ON) was added in a 9 : 1 ratio (9 parts of diluted plasma sample : 1 
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part NMR solvent). DSS was used as spectral reference and imidazole as pH 

indicator for the NMR spectra. After preparation, samples were transferred to 5mm 

NMR tubes (Sigma-Aldrich, St. Louis, MO). 

      2.2.B 1D 1H-NMR Spectroscopy 

The 1D 1H-NMR technique was conducted on hamster plasma samples collected 

at the terminal point of the study (Aim 1) on a 600 MHz Agilent instrument, operating 

at 599.773MHz frequency and a temperature of 300 K. Prior work by Martin et al [99] 

was used as a starting point for the protocol, but further optimization was conducted. 

One-dimensional NMR spectra were acquired using the Carr-Purcell-Meiboom-Gill 

(CPMG) spin-echo sequence [99] with presaturation to attenuate broad signals from 

proteins and lipoproteins. Application of the named pulse sequence resulted in 

spectra with signals only from the small metabolites, due to their longer transverse 

relaxation time. These spectra were measured using a spin-echo loop time of 0.16 s 

and a recycling time of 14 s. A total of 64 scans were collected using a spectral 

width of 10 parts-per-million (ppm) and an acquisition time of 4 s.  

The NMR data were processed using ACD/ Spec Manager 7.00 software 

(Advanced Chemistry Development Inc., Toronto, Canada). The principal of the 

NMR spectrophotometer is that when an external magnetic field is applied, the 

magnetic moment of the nucleus aligns itself with the applied field to create different 

energy levels. Transitions of atomic nuclei between these energy levels over a 

period of time are recorded as free induction decay (FID) files.   

Since these FID files are time domain signal files, it is very difficult to differentiate 

between the spectra of different compounds. Therefore, the FID files are further 
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stacked together as a group and then transformed by Fourier transformation (Ft, 

mathematical algorithm) to a frequency domain. After Ft, the acquired spectrum can 

be resolved into different peaks arising from different compounds or metabolites. 

Each metabolite is represented by single or multiple peaks in the spectra and the 

height of the peak represents the intensity/concentration of the metabolite. Spectra 

were processed by editing, auto-phasing, and auto-baseline correction using the 

ACD software.  Intelligent binning was used to divide the edited spectra into 1000 

bins. The spectra was further digitized to a table of common integrals and exported 

as a non-negative value text file for multivariate data analysis.   

2.2.C Multivariate Data Analysis (MVDA) 

Once 1H-NMR spectra were converted to numeric values (digitized) using ACD 

software, MVDA was used for pattern recognition in the data set. This analysis was 

accomplished using SIMCA P+13.0 statistical software (Umetrics, Kinnelon, NJ).  

PCA is a multivariate projection method designed to extract and display the 

systemic variation in the data (the table of integrals from NMR plasma samples). This 

unsupervised analysis was applied to the spectra of animals that received water, 

complete PAZ, and the biologically active fraction, and any differences between the 

metabolites were investigated. The corresponding loading plot provided information 

about the parts of the spectrum that are responsible for the similarities and/or 

dissimilarities in the data set. PLS is a regression extension of PCA and was used to 

correlate the plasma metabolomic profile with other measured factors, such as HDL 

cholesterol. In PLS-DA the data set was distributed into classes and its objective was 
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to find a model that separates the classes of observation on the basis of their X-

variables, while using a hypothetical Y-variable.  

2.2.D Metabolite Identification and Quantification 

MVDA was used to determine the regions of the spectra responsible for 

similarities and/or dissimilarities between the groups. Further, the focus was on the 

peaks of spectrum that differentiate the groups, and the corresponding metabolites 

within that range, which were identified using Chenomx NMR 7.6. Profiling of the 

NMR spectra was accomplished using the Profiler module. Metabolites from the data 

base were identified and quantified, and the pathways affected by the respective 

metabolites were identified using online KEGG database. 

2.3 AIM 3) To determine the therapeutic effect of the biologically active fraction 

on hypercholesterolemia 

Rationale: The aim was to determine the therapeutic effect of the biologically 

active fraction on animals which had already achieved a hypercholesterolemic state. 

Secondly, this part of the study aimed to determine the time course required for the 

effect of the biologically active fraction on lipid parameters. 

In order to achieve this aim, the animals were fed high fat diet for the first four 

weeks of the study. This was followed by administration of the biologically active 

fraction via their drinking fluid for 3, 7, 10, 14, and 21 days, respectively. All groups 

were sacrificed following the same procedure as in Aim 1 for blood and tissue 

collection. Further, mRNA was extracted from liver tissues to determine the changes 

in the gene expression related to HDL cholesterol metabolism. 

2.3.A Animal Protocol and Experimental Design 
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Forty male Golden Syrian hamsters (Mesocricetus auratus), LVG strain were 

purchased from Charles River Laboratories, Wilmington, MA. Upon arrival they were 

8 weeks old and weighed approximately 80 g each. The animals were acclimatized 

and given water and laboratory rodent diet 5001(Lab Diet, Richmond, IN) ad libitum 

for one week prior to the initiation of the experimental treatment. They were housed 

individually in a temperature-controlled room (25°C ) and maintained on a 12-h 

light/dark cycle.  

Animals were randomly distributed into 5 groups (n=8; T3, T7, T10, T14, and T21) 

and fed HF diet for 4 weeks prior to the treatment regimen (Figure 2.3). The 

biologically active fraction, (20% v/v) was administrated as their drinking fluid for 3 

days (to T3 group), 7 days (to T7 group), 10 days (to T10 group), 14 days (T14 

group), and 21 days (T21 group), respectively, as their treatment. HW group from Aim 

1 was considered as T0 groups in this study and served as control, as the animals in 

this group received HF diet for 4 weeks and water as their drinking fluid. At each end 

point of the study, same procedure described in Aim 1A was used to sacrifice the 

animals and collect blood and tissues. 
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Figure 2.3 Study Design for Aim 3 

 
 

 
  

Male Golden Syrian 
Hamsters (n=40) 

HF diet + Water for 4 weeks  

T14 (n=8) 
14 days on 

BAF 

T21 (n=8) 
21 days 
on BAF 

T10 (n=8) 
10 days on 

BAF 

T7 (n=8) 
7 days on 

BAF 

T3 (n=8) 
3 days on 

BAF 
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2.3.B Plasma Lipid Analysis 

Various lipid assays were performed on the collected plasma to determine the 

changes in the lipoprotein concentrations as a result of the therapeutic intervention 

with the biologically active fraction of PAZ. Plasma TC and TG concentrations were 

determined enzymatically, while HDL cholesterol was measured enzymatically in the 

supernatant following precipitation with Mg2+/dextran sulfate as previously described 

(Pointe Scientific, Canton, MI). The concentration of non-HDL cholesterol was 

calculated as the difference between the measured TC and HDL cholesterol, and 

included the sum of VLDL, IDL, and LDL cholesterol. 

Total Cholesterol Assay 

As previously discussed under Aim 2.1.B 

Triglyceride Assay  

As previously discussed under Aim 2.1.B 

HDL Cholesterol Assay 

As previously discussed under Aim 2.1.B 

2.3.C Real Time Polymerase Chain Reaction for Gene Expression Analysis 

Total RNA Extraction  

 As previously discussed under Aim 2.1.C 

Total RNA to cDNA Preparation 

As previously discussed under Aim 2.1.C 

 Real time RT-PCR Analysis  

 As previously discussed under Aim 2.1.C (relative transcription levels of Apo A1)  
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2.3.D Statistical Analysis  

All data were expressed as the mean ± standard error (SE). Differences between the 

control (HW/T0) and treatment groups (T3, T7, T10, T14, and T21) were determined 

using one-way analysis of variance tests. The data were analyzed to determine the 

therapeutic effect of the biologically active fraction of PAZ relative to distilled water, 

after the animals were fed a high fat diet for 4 weeks. Statistical significance was 

defined as P < 0.05.  

2.4 AIM 4) To investigate the change in plasma metabolomic profiles upon 

therapy with the biologically active fraction  

Rationale: Plasma metabolomic profile using one-dimensional proton NMR was 

performed to determine the changes in the concentration of metabolites present in 

the control group (T0) and the treatment group representing the final time point, T21. 

Data were analyzed using multivariate data analysis SIMCA P+ software. Targeted 

profiling was applied to NMR spectra to determine the metabolites that have a 

significantly different concentration between the groups. Once these metabolites 

have been identified and quantified using CHENOMX software, analysis of the 

pathways involving the specific metabolites was conducted.  

2.4.A Sample Preparation 

As previously discussed under Aim 2.2.A 

      2.4.B 1D 1H-NMR Spectroscopy 

 As previously discussed under Aim 2.2.B 

2.4.C Multivariate Data Analysis  

As previously discussed under Aim 2.2.C 
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PCA and PLS-DA were applied to T0 and T21 groups to look for any differences 

between the metabolites. PLS was used to correlate plasma lipid profile with the 

metabolomic data. 

2.4.D Metabolite Identification and Quantification 

As previously discussed under Aim 2.2.D 
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CHAPTER 3 

RESULTS 

3.1 AIM 1: To determine the biological activity of complete PAZ and its 

subfractions in a hypercholesterolemic animal model  

3.1.A Metabolic Effects of High Fat Diet and PAZ Supplementation 

All hamsters survived the entire duration of the study. Animals in all experimental 

groups consumed similar amounts of food (grams) and fluid (ml). The final body 

weight and weight gained over the duration of the study was not significantly different 

among high fat groups or the control; however CP had a significantly lower body 

weight and weight gain as compared with the groups that received the high fat diet. 

Liver weights were also not significantly different between groups (Table 3.1). 

The change in body weight over time is shown in Figure 3.1.  Week 0 represents 

the body weight (grams) that the animals had upon arrival, whereas week 0’ 

represents the body weight after the first week of acclimatization, when animals were 

fed regular diet. Week 0’ was the starting point on the high fat diet, and week 4 was 

the final time point of the study. There was a similar trend in body weight gain for all 

animals; however the animals receiving the high fat diet had a faster growth rate as 

compared with the animals receiving regular purified diet.  
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Table 3.1 Anthropometrics of Male Hamsters Fed High Fat Diet and PAZ or its 
Fractions for 4 Weeks as a Potential Preventative Agent for Hypercholesterolemia 
 

     CW     CP  HW   HP  HF1  HF2  HF3   HF4 

Body weight, g 106.9±2 104.9±3* 119 ±3 117±3 117±3 118±3 122±2 119±3 

Body weight 
gain, g/4 wk 

21.6±1 19.7±2.5* 32.7± 2 29.7±2 30.3±2.6 33.1±3 29. 9±3.1 31.1±1 

Food Intake, 
g/d 

6.2±0.1 6.2±0.2 7.1±0.1 6.8±0.1 6.7±.0.2 6.8±0.2 7.0±0.2 6.6±0.2 

Energy Intake, 
Kcal/day 

22.6±0.4 22.6±0.7 29.3±0.4 28.1±0.4 27.7±0.8 28.1±0.8 28.9±0.8 27.3±0.8 

Fluid intake, 
ml/d 

8.8±0.4 8.7±0.5 8.3 ±0.2 8.2±0.6 8.3±0.7 7.7±0.5 7.7±0.4 7.2±2.1 

Liver weight, g 3.8 ±0.1** 3.7 ±0.1** 5.4 ± 0.2 5.8±0.3 5.5±0.2 5.4 ±0.3 5.5±0.3 5.4±0.2 

 
Notes: Values are mean ± SE, n = 10/group. * P < 0.05, CP vs. all treatment groups 

(high fat diet); **P < 0.001, CW and CP vs. all treatment groups (high fat diet). Statistical 

program ANOVA with Tukey’s procedure was used, SPSS software. 
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Figure 3.1 Change in Body Weight over 4 Weeks of the Study. Male hamsters 

received high fat diet and PAZ or one of the fractions for the duration of the study, 

starting with week 0’. Values are mean of the body weight of all animals from the 

group. N = 10/group 
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3.1.B Plasma Lipid Analysis 

In order to determine that the hypercholesterolemic state was induced in the 

animals that received a high fat diet, plasma TC, TG, and non-HDL cholesterol 

concentrations were measured in animals that received regular diet and water (CW) 

and high fat diet and water (HW). Results showed a significant increase in plasma TC 

and non-HDL cholesterol. The TG in HW group were also increased, but did not 

reach significance (Figure 3.2). Therefore, we concluded that we successfully 

induced a hypercholesterolemic state in the animal model. 

When comparing the groups on high fat diet alone, plasma total cholesterol 

(Figure 3.3) and triglycerides (Figure 3.4) were not significantly different in the 

treatment groups as compared with the high fat controls, HW. However, the TC/HDL 

cholesterol ratio was significantly lower in all experimental animals when compared 

with controls (P < 0.05 in the HP, HP1, and HP2 groups; P < 0.001 in the HP3 and 

HP4 groups, Figure 3.5). Consumption of PAZ or its fractions lowered non-HDL 

cholesterol concentrations in the HP group (P < 0.05) and in the HP3 and HP4 (P < 

0.001) groups, as compared with the controls (Figure 3.6). Moreover, the 

concentration of plasma HDL cholesterol was significantly increased in the HP, HP3, 

and HP4 groups (P < 0.001), when compared with controls (Figure 3.7).  
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Figure 3.2 Effect of High Fat Diet on Lipid Profile 

Notes: Lipid parameters (TG, TC, and non-HDL cholesterol) of CW and HW groups. 

Values are mean ± SE. * P < 0.001 as compared with CW group. 

Abbreviations: TG, triglycerides; TC, total cholesterol; HDL, high lipoprotein 

concentration; CW, control diet + water group; HW, high fat diet +water group 
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Figure 3.3 Effect of PAZ and its fractions on Total Cholesterol Concentration  

Notes: Values of total cholesterol measured in groups that received high fat diet 

along with water (HW), complete PAZ (HP), PAZ fraction 1 (HF1), PAZ fraction 2 

(HF2), PAZ fraction 3 (HF3), and PAZ fraction 4 (HF4) for 4 weeks. Values are mean 

± SE. No sig. difference as compared with HW group.  
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Figure 3.4 Effect of PAZ and its fractions on Triglycerides Concentration 

Notes: Values of triglycerides measured in groups that received high fat diet along 

with water (HW), complete PAZ (HP), PAZ fraction 1 (HF1), PAZ fraction 2 (HF2), 

PAZ fraction 3 (HF3), and PAZ fraction 4 (HF4) for 4 weeks. Values are mean ± SE. 

No sig. difference as compared with HW group.  
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Figure 3.5 Effect of PAZ and its fractions on TC/ HDL Ratio 

Notes:  The ratio of TC/HDL cholesterol was measured in groups that received high 

fat diet along with water (HW), complete PAZ (HP), PAZ fraction 1 (HF1), PAZ 

fraction 2 (HF2), PAZ fraction 3 (HF3), and PAZ fraction 4 (HF4) for 4 weeks. Values 

are mean ± SE. * P < 0.05, ** P < 0.001 as compared with HW group. 
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Figure 3.6 Effect of PAZ and its fractions on non-HDL Cholesterol Concentration 

Notes: Values of non-HDL cholesterol measured in groups that received high fat diet 

along with water (HW), complete PAZ (HP), PAZ fraction 1 (HF1), PAZ fraction 2 

(HF2), PAZ fraction 3 (HF3), and PAZ fraction 4 (HF4) for 4 weeks. Values are mean 

± SE. *P < 0.05, ** P < 0.001 as compared with HW group. 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

4

HW HP HF1 HF2 HF3 HF4

P
la

sm
a

 n
o

n
-H

D
L 

C
h

o
le

st
e

ro
l 

C
o

n
ce

n
tr

a
ti

o
n

(m
m

o
l/

L)

Experimental Group

*                                          **          **



www.manaraa.com

66 
 

 

 

Figure 3.7 Effect of PAZ and its fractions on HDL Cholesterol Concentration  

Notes: Values of plasma HDL cholesterol measured in groups that received high fat 

diet along with water (HW), complete PAZ (HP), PAZ fraction 1 (HF1), PAZ fraction 2 

(HF2), PAZ fraction 3 (HF3), and PAZ fraction 4 (HF4) for 4 weeks. Values are mean 

± SE. * P < 0.05 as compared with HW group. 
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Ultracentrifugation was performed on pooled plasma (4-5 hamsters/group) and 

lipoprotein fractionation indicated that a higher proportion of cholesterol was carried 

in the HDL fraction in the HP group (Figure 3.8), as compared with HW group. 

Particle sizes for LDL (Figure 3.9) were calculated and there was no statistical 

difference between the groups that received PAZ or its subfractions, when compared 

with HW. However, when HDL particle size was measured, data showed that the 

particle sizes of HF3 and HF4 groups were significantly increased as compared with 

control group (Figure 3.10). Data augment the previous finding that HDL cholesterol 

concentration has been increased in these groups, but also the particle size was 

enlarged.  
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Figure 3.8 Effect of PAZ on Lipoprotein Particle Distribution 

Note: The graph depicts an increase in the high density particles in HP group (3.5 

mmol/L) vs. HW (3.1 mmol/L) group. Total cholesterol concentrations were measured 

in all fractions (0.5 mL/fraction) using standard enzymatic reagents. Graph represents 

the mean of pooled plasma for HW and HP groups.  
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Figure 3.9 Effect of PAZ and its fractions on LDL Particle Size  

Notes: Values are mean ± SE. No sig. difference as compared with HW group. High 

fat diet along with water (HW), complete PAZ (HP), PAZ fraction 1 (HF1), PAZ 

fraction 2 (HF2), PAZ fraction 3 (HF3), and PAZ fraction 4 (HF4) 
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Figure 3.10 Effect of PAZ and its fractions on HDL Particle Size 

Notes: Values are mean ± SE. * P < 0.05 as compared with HW group. High fat diet 

along with water (HW), complete PAZ (HP), PAZ fraction 1 (HF1), PAZ fraction 2 

(HF2), PAZ fraction 3 (HF3), and PAZ fraction 4 (HF4) for 4 weeks 
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3.1.C Effect of PAZ and its Subfractions on Gene Expression 

In an attempt to elucidate the mechanism by which PAZ and its subfractions 

altered the lipoprotein profile by increasing HDL, the activities of ABCA1, Apo A1, 

SRB1, and CETP were assessed. When compared with the control group (HW), 

hamsters fed the PAZ (HP group) and fraction 4 (HF4 group) had the highest fold 

increase (approximately 5-fold) in Apo A1 expression, while the HP3 group showed 

a minor increase (2-fold, Figure 3.11a). ABCA1 sterol transporter expression 

showed a moderate increase in the HP3 and HP4 groups (1.7-fold and 1.8-fold, 

respectively, Figure 3.11b), as compared with HW group.  

In addition, SRB1 activity levels were also modestly higher in the HP3 and HP4 

groups (approximately 2-fold, Figure 3.11c) when compared with controls. The 

differences in the other treatment groups (HP1 and HP2) were not significant. The 

data suggest that the increase in HDL cholesterol concentrations in the HP, HP3, 

and HP4 groups was in part attributable to the increase in production of nascent 

HDL cholesterol particles and/or clearance via SRB1 receptors. Hepatic CETP 

expression was characterized by a 2-fold decrease only in the HP4 group as 

compared with those receiving water alone (Figure 3.11d). Inhibition of CETP is 

consistent with the decrease in plasma non-HDL lipoprotein along with the increase 

in HDL cholesterol. 

Correlations between plasma lipid concentrations and hepatic gene expression 

levels were sought to identify potential relationships between molecular processes 

and circulating lipid concentrations (Table 3.2). TC, non-HDL cholesterol, and 

TC/HDL ratio were negatively correlated with hepatic expression of genes of ABCA1 
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and SRB1. There was a significant positive correlation between plasma HDL 

cholesterol concentrations and mRNA levels of Apo A1 (P < 0.01). In addition, 

positive correlations between HDL cholesterol concentrations and mRNA levels of 

SRB1 were observed. 
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a b  

c  d  

 
Figure 3.11 Effect of PAZ and its fractions on Gene Expression 

Notes: Relative levels of expression of genes that encode key proteins involved in 

the regulation of cholesterol and HDL metabolism in animals fed a high fat diet plus 

complete PAZ (HP) or one of the fractions, as compared with the control group on 

high fat diet and water (HW). Values are expressed as mean, n= 5 animals per 

group (n=10 for HP group); Apo A1, Apolipoprotein A1 (3.11a); ABCA1, ATP-binding 

cassette transporter A1 (3.11b); SRB1, Scavenger receptor class B member 1 
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(3.11c); CETP, Cholesteryl ester transfer protein (3.11d). Each mRNA was 

normalized with GAPDH and is expressed as a fold change.  
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Table 3.2 Correlation between Plasma Cholesterol Concentrations and Expression 
of Hepatic Genes 
 
 Genes                               Total                        HDL            TC/HDL           non-HDL  
                                      cholesterol           cholesterol          ratio          cholesterol 
 
APO A1                           0.153                       0.399*              -0.342*             -0.243 
ABC A1                          -0.068                       0.252                 -0.33*             -0.33* 
SRB 1                             -0.190                      0.252                 -0.420*           -0.459* 
CETP                              0.040                       -0.055                 0.056              0.099  

 
Note: Values are Pearson correlation, N = 10. *P < 0.01 
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3.2 AIM 2: To investigate the change in plasma metabolomic profiles upon 

administration of PAZ and the biologically active fraction 

3.2.A Multivariate Data Analysis  

To further investigate the preventative effect of the algal infusion PAZ on the 

hypercholesterolemic hamsters, a metabolomic approach was applied to plasma 

samples from control (HW) and treatment groups HP and HF4. One-dimensional 

NMR spectra were acquired using the CPMG spin-echo sequence with 

presaturation, in order to attenuate broad signals acquired from proteins and 

lipoproteins. The resulting spectra have the signals from small metabolites only 

(Figure 3.12). During the pre-processing of the spectra, the acquired NMR files were 

edited, while auto-phasing and auto-baseline correction was applied (Figure 3.13). 

The spectra were further digitized to a table of common integrals and exported as a 

non-negative value text file for multivariate data analysis.  
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Figure 3.12 NMR Spectrum obtained on 600 MHz Agilent Instrument, using CPMG 
Spin-Echo Sequence with Presaturation  
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Figure 3.13 1H NMR Spectra of HW, HP, and HF4 Groups 

Notes: Spectra were stacked together as a group and transformed by Fourier 

transformation to a frequency domain. Spectra were processed by editing, auto-phasing, 

and auto-baseline correction. Further, intelligent binning was used to divide the edited 

spectra in 1000 bins.  
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To confirm that the metabolic profile of the hamsters that received high fat diet 

was changed, PCA was performed on the NMR data. Three-dimensional PCA plot 

(Figure 3.14) shows a clear separation between CW and HW groups, which 

represents the effect of the high fat diet. PLS-DA of the same two groups, reinforcing 

the effect of the diet is shown in Figure 3.15. We also analyzed CP and HP groups, to 

look at the effect of diet and addition of PAZ, and a clear separation of the two groups 

was observed (Figure 3.16).  

Further, the focus was on the groups that received the high fat diet along with the 

complete PAZ infusion or fraction 4 and compare them with the control group that 

received water and high fat. Figure 3.17 represents the 3-dimensional PCA plot, 

providing overall information on metabolic changes of the hamsters due to PAZ or 

fraction 4 administrations, as compared with controls. To better analyze each 

treatment group as compared with the control animals, PCA and PLS-DA was 

conducted selecting two groups at the time.  

The effect of complete PAZ infusion on the metabolic profile resulted in a clear 

separation of the HP and HW groups, as shown in Figure 3.18. The effect of 

administration of fraction 4 to the hamsters resulted in clustering of the HW and HF4 

groups, showing an apparent separation based on their metabolic profiles (Figure 

3.19a). The corresponding loading plot (Fig. 3.19b) provided significant information 

on the contribution of each variable to the pattern in the score plots, which can aid in 

metabolite identification in Chenomx software. 
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Figure 3.14 Characterizations of the Plasma Metabolomic Changes Induced by High 

Fat Diet. 3-Dimensional CMPG_PCA score plot revealed that CW and HW groups 

were clearly separated. P < 0.05 

Notes: CW, regular purified diet and water; HW, high fat diet and water. N = 8 

hamsters/group. 

Abbreviations: CPMG, Carr-Purcell-Meiboom-Gill; PCA, principal components 

analysis  
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Figure 3.15 Characterizations of the Plasma Metabolomic Changes Induced by High 

Fat Diet. 2-Dimensional CMPG_PLS-DA score plot revealed that CW and HW groups 

were clearly separated due to the diet received. P < 0.05 

Notes: CW, regular purified diet and water; HW, high fat diet and water. N = 8 

hamsters/group. 

Abbreviations: CPMG, Carr-Purcell-Meiboom-Gill; PLS-DA, partial least squares –

discriminant analysis  
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Figure 3.16 Characterizations of the Plasma Metabolomic Changes Induced by Diet 

and PAZ Consumption. 2-Dimensional CMPG_PLS-DA score plot showing group 

discrimination (CP vs. HP) based on PAZ and the diet received. P < 0.05 

Notes: CP, regular purified diet and PAZ; HP, high fat diet and PAZ. N = 8 

hamsters/group. 

Abbreviations: CPMG, Carr-Purcell-Meiboom-Gill; PLS-DA, partial least squares –

discriminant analysis  
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Figure 3.17 Characterizations of the Plasma Metabolomic Changes Induced by High 

Fat Diet and Drinking Fluid.  3-Dimensional CMPG_PCA score plot revealed that HW, 

HP and HF4 groups were clearly separated. P < 0.05 

Notes: HW, high fat and water; HP, high fat diet and PAZ; HF4, high fat and fraction 

4. N = 8 hamsters/group. 

Abbreviations: CPMG, Carr-Purcell-Meiboom-Gill; PCA, principal components 

analysis  
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Figure 3.18 Characterizations of the Plasma Metabolomic Changes Induced by PAZ. 

2-Dimensional CMPG_PLS-DA score plot showing group discrimination (HW vs. HP) 

based on PAZ administration. P < 0.05 

Notes: HW, high fat diet and water; HP, high fat diet and PAZ. N = 8 hamsters/group. 

Abbreviations: CPMG, Carr-Purcell-Meiboom-Gill; PLS-DA, partial least squares-

discriminant analysis  
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Figure 3.19 Characterizations of the Plasma Metabolomic Changes Induced by 

Fraction 4. 3.19a. 3-Dimensional CMPG_PCA score plot revealed that HW and HF4 

groups were clearly separated. P < 0.05; 3.19b CMPG_PCA corresponding loading 

plot indicating the regions of the spectra that are responsible for the group separation 

Notes: HW, high fat diet and water; HF4, high fat diet and fraction 4. N = 8 

hamsters/group. 

Abbreviations: CPMG, Carr-Purcell-Meiboom-Gill; PCA, principal components 

analysis  
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Further, the discriminant analysis indicated that the treatment with PAZ and 

fraction 4 induced specific metabolites patterns that enabled class assignment of the 

hamsters (Figure 3.20). The PLS-DA score plot revealed that the group that received 

PAZ was clearly separated by the principal component 1 from the group that received 

fraction 4.  

In addition, 2-dimensional PLS plot allowed for the evaluation of the PAZ and 

fraction 4 on changes in the plasma metabolome, inducing a significant coefficient of 

determination R² = 0.6, when the data were correlated with the plasma HDL 

concentrations (Fig. 3.21). The PLS regression between the plasma HDL 

concentration and the NMR variable revealed that 60 % of the variations in the 

plasma profile can be predicted by different treatment conditions (PAZ vs. fraction 4).  

Furthermore, PLS analysis showed that HDL cholesterol concentrations were 

positively correlated with the plasma metabolic profile, indicating that the composition 

shift toward the higher density lipoproteins is reflected in the change in 

concentrations of some of the small metabolites present in plasma. 
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Figure 3.20 Characterizations of the Plasma Metabolomic Changes Induced by PAZ 

and F4. 2-Dimensional CMPG_PLS-DA score plot showing group discrimination (HF4 

vs. HP) based on PAZ and F4 administration. P < 0.05 

Notes: HF4, high fat diet and fraction 4; HP, high fat diet and PAZ. N = 8 

hamsters/group. 

Abbreviations: CPMG, Carr-Purcell-Meiboom-Gill; PLS-DA, partial least squares –

discriminant analysis  
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Figure 3.21 Correlation of the PAZ fraction- induced plasma metabolomic and HDL 

cholesterol.  

Notes: Changes among the metabolomic score values (X) of individual hamsters fed 

a high fat diet and different drinking fluids (F4 or PAZ fraction) are plotted along  with 

the corresponding individual plasma HDL scores (Y), as determined by the PLS 

analysis. The coefficient of determination (R² = 0.6) among X and Y that was 

calculated after linearization of the relationship is indicated. 
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3.2.B Metabolite Identification and Quantification (Chenomx) 

A total of fifty plasma metabolites of the control and treatment groups were 

identified and quantified using Chenomx NMR Suite software, including amino acids 

(leucine/isoleucine, valine), organic acids (3-hydroxybutyrate, lactate, acetate, 

acetoacetate, citrate, pyruvate, creatine, creatinine), carbohydrates (glucose, 

galactitol, glucitol), and phospholipids-associated molecules. The metabolites that 

had a significantly lower concentration in the group that received the algal infusion 

PAZ and in the group that received fraction 4 are summarized in Table 3.4 and 3.5, 

respectively.  

Results indicated that the concentrations of betaine, phosphocholine, and 

glycerol-phosphocholine were significantly lowered in HP group as compared with 

HW. Treatment with the algal infusion PAZ on hypercholesterolemic hamsters also 

resulted in decreased levels of several amino acids, such as arginine, leucine, 

isoleucine, threonine, taurine. 

When the experimental animals received the fraction 4 of PAZ (HF4 group), the 

concentration of additional metabolites resulted to be significantly lower, as compared 

with the control group. Besides the metabolites that were found to be significantly 

lower in HP group, we determined that sixteen additional metabolites were decreased 

in the group that received fraction 4 (HF4) as a preventative agent. Additionally to the 

phospholipids-associated metabolites betaine, phosphocholine, and glycerol-

phosphocholine, which recently have been linked to atherosclerosis, we also found 

that also choline, carnitine, and trimethylamine N-oxide (TMAO) have been 

significantly reduced in HF4 group. 
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Table 3.3 Metabolites with Significantly Lower Concentration in Hypercholesterolemic 
Hamsters that Received PAZ for 4 Weeks as a Preventative Agent as Compared with 
HW 
 

Metabolites Peak Regions (ppm) 

Acetoacetate 2.3, 3.4 

Arginine 1.6, 1.7, 1.9, 3.2, 3.8 

Betaine 3.3, 3.9 

Glucitol 3.6, 3.7, 3.8 

Glutamine 2.1, 2.4, 3.8, 6.9, 7.6 

Glycerol 3.6, 3.8 

Isoleucine 0.9, 1.0, 1.2, 1.5, 2.0, 3.7 

Leucine 0.9, 1.7, 3.7 

Glycero-phosphocholine 3.2, 3.6, 3.7, 3.9, 4.3 

Taurine 3.2, 3.4 

Threonine 1.3, 3.6, 4.3 
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Table 3.4 Metabolites with Significantly Lower Concentration in Hypercholesterolemic 
Hamsters that Received F4 as a Preventative Agent as Compared with HW 
 

Metabolites Peak Regions (ppm) 

2-Aminobutyrate 1.0, 1.9, 3.7 

3-Hydroxybutyrate 1.2, 2.3, 2.4, 4.1 

Acetate 1.9 

Acetoacetate 2.3, 3.4 

Alloisoleucine 0.9, 1.0, 1.3, 1.4, 2.1, 3.7 

Arabinitol 3.6, 3.7, 3.8, 3.9 

Arginine 1.6, 1.7, 1.9, 3.2, 3.8 

Betaine 3.3, 3.9 

Carnitine 2.4, 3.2, 3.4, 4.6 

Choline 3.2, 3.5, 4.1 

Galactitol 3.7, 4.0 

Glucitol 3.6, 3.7, 3.8 

Glucose 3.2, 3.4, 3.5, 3.7, 3.8, 3.9, 4.7, 5.2 

Glutamine 2.1, 2.4, 3.8, 6.9, 7.6 

Glycerol 3.6, 3.8 

Isoleucine 0.9, 1.0, 1.2, 1.5, 2.0, 3.7 

Lactate 1.3, 4.1 

Leucine 0.9, 1.7, 3.7 

Malonate 3.1 

O-Phosphocholine 3.2, 3.6, 4.1 

Pyruvate 2.4 

Glycero-phosphocholine 3.2, 3.6, 3.7, 3.9, 4.3 

Succinate 2.4 

Taurine 3.2, 3.4 

Threonine 1.3, 3.6, 4.3 

Trimethylamine N-oxide 3.2 

Valine 1.0, 2.3, 3.6 



www.manaraa.com

92 
 

 

3.3 AIM 3: To determine the therapeutic effect of the biologically active fraction 

on hypercholesterolemia 

3.3.A Metabolic Effects of High Fat Diet and Treatment with Fraction 4 

Animals were fed a high fat diet and water for the first four weeks of the study, 

time that represented the end point for T0. After four weeks, groups T3, T7, T10, 

T14, and T21 received the biologically active fraction of PAZ as their drinking fluid 

for 3, 7, 10, 14, and 21 days, respectively, while continuing the high fat diet. Animals 

were sacrificed at different time points, based on the number of days they were 

designed to receive treatment.   

The net body weight gain of the animals for the first 4 weeks of the study, as well 

as the food efficiency ratio (g gained/ g feed) were statistically significant in group T7 

(P < 0.05, Table 3.5). The ratio of fluid/water intake and the ratio of liver weight/body 

weight were not statistically different when compared with T0 group (Table 3.5). 

While on treatment with PAZ fraction, all animals survived the duration of the study 

and no abnormal characteristics related to the physiology of the animals were noted.  
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Table 3.5 Anthropometrics of Male Hamsters Fed High Fat Diet and Water for 4 
Weeks, Followed by High Fat and F4 Treatment for 0, 3, 7, 10, 14, and 21 Days 
 

 

T0 T3     T7 T10 T14 T21 

Body 
weight 
gain, g/4 
weeks 

37.2±2.1 40.8±3.7 50.6±6.2* 44.2±3 34.4±3.5 39.8±2.9 

Food 
intake, g/d 

7.1±0.1 
 

7.4±0.2 7.5±0.2 7.4±0.2 6.9±0.2 7.4±0.1 

Food 
efficiency 
ratio, g 
gain/g 
feed 

0.16±0.01 0.2±0.02 0.22±0.01* 0.2±0.01 0.17±0.01 0.19±0.01 

Fluid 
intake, 
PAZ/water 

1.0±0.0 0.96±.04 0.95±.05 1.1±.04 1.0±.06 1.1±.04 

Liver/body 
weight 

4.6 ±0.1 4.9±0.1 4.7±0.1 4.8±0.1 4.7±0.1 4.5±0.2 

 
Notes: Values are mean ± SE, N = 10/group (T0), N = 8/group (T3, T7, T10, T14, 

T21). *P < 0.05 when compared with T0. Statistical program ANOVA with Tukey’s 

procedure was used, SPSS software 
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3.3.B Plasma Lipid Profile upon Therapy with Fraction 4  

Plasma lipid profile of the hypercholesterolemic hamsters was enzymatically 

measured to determine the therapeutic effect of fraction 4 when administrated as the 

drinking fluid. Plasma TC (Figure 3.22) and TG (Figure 3.23) were not significantly 

reduced in the treatment groups while receiving the fraction 4, as compared with the 

control group. However, the TC/HDL ratio was significantly lower in all treatment 

groups when compared with the control T0 group (P < 0.001, Figure 3.24). Moreover, 

the concentration of HDL cholesterol was significantly increased in T3 group (P < 

0.05), as well as in group T21 (P < 0.001), when compared with the control group 

(Figure 3.25).  

Consumption of the biologically active fraction of PAZ, F4 also significantly 

reduced the non-HDL cholesterol in all groups, as compared with the control animals 

(P < 0.001 in T3, T7, and T10; P < 0.05 in T14 and T2, Figure 3.26). These results 

corroborates with our previous findings that ingestion of PAZ and its biologically 

active fraction can improve the plasma lipoprotein profile by significantly increasing 

the HDL cholesterol concentrations, while decreasing the  non-HDL cholesterol and 

TC/HDL ratio in hypercholesterolemic hamsters. 
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Figure 3.22 Effect of Fraction 4 on Total Cholesterol Concentration 

Notes: Plasma total cholesterol concentrations in male hamsters fed high fat diet for 

4 weeks, followed by high fat and F4 for 0, 3, 7, 10, 14, and 21 days. Values are 

mean ± SE. No sig. difference as compared with T0 group.  

 

 

 

 

 

0

1

2

3

4

5

6

7

T0 T3 T7 T10 T14 T21

P
la

sm
a

 T
o

ta
l 

C
h

o
le

st
e

ro
l 

C
o

n
ce

n
tr

a
ti

o
n

(m
m

o
l/

L)

Experimental Group



www.manaraa.com

96 
 

 

 

Figure 3.23 Effect of Fraction 4 on Triglycerides Concentration 

Notes: Plasma triglyceride concentrations in male hamsters fed high fat diet for 4 

weeks, followed by high fat and F4 for 0, 3, 7, 10, 14, and 21 days. Values are mean 

± SE. No sig. difference as compared with T0 group.  

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

T0 T3 T7 T10 T14 T21

P
la

sm
a

 T
ri

g
ly

ce
ri

d
e

s 
C

o
n

ce
n

ta
ti

o
n

(m
m

o
l/

L)

Experimental Group



www.manaraa.com

97 
 

 

 

Figure 3.24 Effect of Fraction 4 on TC/HDL Cholesterol Concentration 

Notes: Plasma TC/HDL cholesterol concentrations in male hamsters fed high fat diet 

for 4 weeks, followed by high fat and algal treatment for 0, 3, 7, 10, 14, and 21 days. 

Values are mean ± SE. *P < 0.001 as compared with T0 group.  
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Figure 3.25 Effect of Fraction 4 on HDL Cholesterol Concentration 

Notes: Plasma HDL cholesterol concentrations in male hamsters fed high fat diet for 

4 weeks, followed by high fat and algal treatment for 0, 3, 7, 10, 14, and 21 days. 

Values are mean ± SE. *P < 0.05, **P < 0.001 as compared with T0 group.  
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Figure 3.26 Effect of Fraction 4 on non-HDL Cholesterol Concentration 

Notes: Plasma non-HDL cholesterol concentrations in male hamsters fed high fat 

diet for 4 weeks, followed by high fat and algal treatment for 0, 3, 7, 10, 14, and 21 

days. Values are mean ± SE. *P < 0.01, **P < 0.001 as compared with T0 group.  
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3.3.C Therapeutic Effect of the Biologically Active Fraction (F4) on Apo A1 

Gene Expression 

In order to determine the therapeutic potential of the biologically active fraction of 

PAZ at the molecular level and to validate the significant increase in HDL cholesterol 

concentration, the activity of Apo A1 gene expression was evaluated. Also, the 

earliest time point at which the genetic expression is altered was determined. Apo 

A1 gene expression analysis showed that hamsters fed the biologically active 

fraction for 10 days (T10) had a moderate (3-fold) increase, while hamsters fed the 

PAZ fraction for 21 days exhibit an approximate 6-fold increase (Figure 3.27).  

These results correlate with the increase in the plasma concentration of HDL 

cholesterol, as Apo A1 is responsible for the production of nascent HDL cholesterol 

particles. Thus the active fraction of PAZ increased HDL concentration at least in 

part by increased production of nascent HDL particles both when given as a 

treatment or preventative agent [100].  
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 Figure 3.27 Relative Levels of Hepatic mRNA Expression of Apo A1 Gene in 

Hypercholesterolemic Hamsters.  

Notes: Animals were fed a high fat diet for 4 weeks, followed by high fat diet plus F4 

for 0, 3, 7, 10, 14, and 21 days, respectively. Values are expressed as mean of 

threshold cycle (ct) values; n=8 animals per group (n=5 for T0 group). Each mRNA 

was normalized with GAPDH and is expressed as a fold change.  

Abbreviations: ApoA1, Apolipoprotein A1 
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3.4 Aim 4: To investigate the change in plasma metabolomic profiles upon 

therapy with the biologically active fraction F4 

3.4.A Multivariate Data Analysis  

To investigate the therapeutic effect of the biologically active fraction on the 

hypercholesterolemic hamsters, a metabolomic approach was applied to plasma 

samples from controls (T0) and 21 days treatment group (T21) by 1H NMR 

spectroscopy. PCA was performed on the NMR data to get the overall information 

on metabolomic profile of hamsters, due to fraction 4 administration. The clustering 

of the T0 and T21 groups showed a clear separation of the hamsters in PCA plots 

(Figure 3.28a).  Due to the fact that one of the samples in group T21 was outside of 

the ellipse of Hotelling’s 95% confidence interval, it was considered a strong outlier 

and removed from the PCA analysis. The corresponding loading plot (Figure 3.28b) 

along with the variable importance on projection (VIP) plot (Figure 3.28c) provided 

significant information on the contribution of each variable to the pattern in the score 

plots, which can aid in metabolite identification in Chenomx software. 

The discriminant analysis (PLS-DA) indicated that the treatment with PAZ 

fraction for 21 days induced specific metabolites patterns that enabled class 

assignment of the hamsters (PLS-DA, Figure 3.29). The PLS-DA score plot revealed 

that the control and treatment group were clearly separated by the principal 

component 1. In addition, the 2- dimensional PLS plot (Figure 3.30 a, b) allowed for 

the evaluation of the F4 treatment on changes in the plasma metabolome. For 

instance, the treatment with the active fraction for 21 days induced a significant 

coefficient of determination R² = 0.7, when the data were correlated with the plasma 
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lipid profile (Figure 3.30a). The PLS regression between the NMR variables and the 

plasma lipid profile revealed that 70% of the variations in the lipid profile can be 

predicted by different treatment conditions (water vs. F4).  

Furthermore, as determined by the PLS analysis, HDL cholesterol concentrations 

were positively correlated with the plasma metabolomic profile (R² = 0.62), indicating 

that there is a positive correlation between the higher density lipoproteins 

concentrations and some of the small metabolites present in plasma (Figure 3.30b). 

Moreover, the orthogonal projections to latent structures (OPLS) aides in the 

process of identifying statistically significant and potentially biochemical significant 

metabolites based on contribution to the model and their reliability. The OPLS_S 

Plot (Figure 3.31) provided important information on the contribution of each variable 

to the pattern in the score plots, specifically was used to identify possible 

metabolites that correlate the metabolomic profile to HDL cholesterol concentration. 
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Figure 3.28 Characterizations

3.28a. CMPG_PCA score plot revealed that T0 and T21 groups

along [t1] and [t2]. P < 0.05; 3.28

the regions of the spectra that are responsible for the group separatio

Notes: T0, high fat diet and water; T21

N = 8/hamsters per group. 

Abbreviations: CPMG, Carr-

PLS-DA, partial least squares
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s of the Plasma Metabolomic Changes Induced by F4

. CMPG_PCA score plot revealed that T0 and T21 groups were clearly separated 

3.28b. CMPG_PCA corresponding loading plot indicating 

the regions of the spectra that are responsible for the group separation 

T0, high fat diet and water; T21, high fat diet and F4 for 21 days. 

-Purcell-Meiboom-Gill; PCA, principal components analysis; 

DA, partial least squares-discriminant analysis 

Principal Component 1 
   

 

bolomic Changes Induced by F4 

were clearly separated 

. CMPG_PCA corresponding loading plot indicating 

  

Gill; PCA, principal components analysis; 
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Figure 3.28c. Characterizations of Plasma Metabolomic Changes Induced by F4. 

Notes: Variable importance on projection (VIP) plot shows the contribution of each 

variable to the pattern, with the regions of spectra in the far most left of the plot carrying 

most of the weight. 
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Figure 3.29 Characterizations of the Plasma Metabolomic Changes Induced by F4. 

Two-dimensional PLS-DA score plot showing group discrimination based on treatment 

received. P < 0.05 

Notes: T0, high fat diet and water; T21, high fat diet and F4 for 21 days. N = 8 hamsters 

per group. 
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Figure 3.30 Correlation of the Fraction 4-Induced Plasma Metabolomic and Lipid 

Profile.  

Notes: Changes among the metabolomic score values (X) of individual hamsters fed a 

high fat diet and different drinking fluids (water or F4) are plotted along with the 

corresponding individual plasma lipid profile scores (Y), as determined by the PLS 

analysis. The coefficient of determination (R²) among X and Y that was calculated after 

linearization of the relationship is indicated; 3.30a Relationship between the plasma 

metabolomic and complete lipid profile. (R² = 0.7); 3.30b Relationship between the 

plasma metabolomic profile and HDL cholesterol. (R² = 0.62); N = 8 hamsters per 

group. 

Abbreviations: T0, high fat diet and water; T21, high fat diet and fraction 4 for 21 days. 

PLS, partial least squares 
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Figure 3.31 Characterizations of the Plasma Metabolomic Changes Induced by F4. 

Notes: CPMG_OPLS-S plot used to identify possible metabolites that correlate the 

metabolomic profile to HDL cholesterol metabolism 

Abbreviations: OPLS, orthogonal partial least square 
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3.4.B Metabolite Identification and Quantification (Chenomx) 

A total of fifty plasma metabolites of the control and treatment groups were 

identified and quantified using Chenomx NMR Suite software, including amino acids 

(leucine/isoleucine, valine), organic acids (3-hydroxybutyrate, lactate, acetate, 

acetoacetate, citrate, pyruvate, creatine, creatinine), carbohydrates (glucose, 

galactitol, glucitol), phospholipids-associated molecules. The metabolites that had a 

significantly lower concentration in the group that received the biologically active 

fraction for 21 days are summarized in Table 3.6.  

Results indicated that the concentrations of choline, phosphocholine, glycerol-

phosphocholine, betaine, and carnitine, were significantly lowered in T21 group as 

compared with T0. Treatment with the biologically active fraction of PAZ on 

hypercholesterolemic hamsters also resulted in decreased levels of several amino 

acids (arginine, leucine, isoleucine, threonine, taurine), as well as some other 

important molecules (3-hydroxy-butyrate, acetate, glycerol) involved in fatty acids 

metabolism.   
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Table 3.6 List of Plasma Metabolites Quantified to be at Lower Concentrations  
After 21 Days of Treatment  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Notes: Plasma metabolites found to be significantly lower in T21 group as compared 

with T0 group. The metabolites were quantified using the Chenomx 7.6 NMR Suite 

database and significance was obtained using 2 tailed Student t-tests, P < 0.05.  

T0, high fat diet and water; T21, high fat diet and F4 for 21 days, N = 4 

hamsters/group for quantification of metabolites. 

  

Metabolites Peak regions (ppm) Metabolites  Peak regions (ppm) 

2-Aminobutyrate 1.0, 1.9, 3.7 Glucitol 3.6,3.7,3.8 

3-Hydroxybutyrate 1.2, 2.3,2.4,4.1 Glycerol 3.6,3.8 

Acetate 1.9 Isoleucine 0.9,1.0,1.2,1.5,2.0,3.7 

Arabinitol 3.6,3.7,3.8,3.9 Lactate 1.3,4.1 

Arginine 1.6,1.7,1.9,3.2,3.8 Leucine 0.9,1.7,3.7 

Betaine 3.3,3.9 Phosphocholine 3.2,3.6,4.1 

Carnitine 2.4,3.2,3.4,4.6 Glycero-

phosphocholine 

3.2,3.6,3.7,3.9,4.3 

Choline 3.2,3.5,4.1 Taurine 3.2,3.4 

Galactitol 3.7,4.0 Threonine 1.3,3.6,4.3 
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CHAPTER 4 

DISCUSSION 

The current study was designed to examine the preventative and therapeutic 

effect of the algal infusion product Proalgazyme and its subfractions in a diet-

induced hypercholesterolemic hamster model. More specifically, the objective was to 

investigate the possible mechanism of action whereby certain fractions of PAZ can 

influence the cholesterol metabolism pathway. In addition, the scope was also to 

determine the plasma metabolomic profile and compare the changes produced with 

the plasma lipid profile, and possibly identify new relationship between smaller 

metabolites and hypercholesterolemia.  

A hamster model was used in this study given that it is the most appropriate 

model to study lipoprotein metabolism. Due to interspecies differences in the 

lipoprotein metabolism, it is important to study the metabolic changes in a non-

primate model that develops the most similarities to the human disease. The 

hamster model used in the current study has been previously found to be suitable for 

exploring hypercholesterolemia associated with dietary changes [97] and the high fat 

diet used was proven to induce a hypercholesterolemic state in the hamster model 

[100]. As previously mentioned, plasma lipoprotein metabolism in hamsters is 

comparable to humans due to similar component and metabolism of both 

lipoproteins and bile acids [101, 102]. 

Different types of algal cellular biomass and  algal extracts have been studied for 

their ability to lower circulating cholesterol concentrations in hamsters consuming 
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hypercholesterolemic diets [103] and in humans [104], and showed a reduction in 

plasma total cholesterol, non-HDL cholesterol , and/or triglycerides concentrations.  

Previous findings [68] when PAZ was administrated to humans for 10 weeks to 

evaluate its effect on cardiovascular risk factors associated with the metabolic 

syndrome, showed a decrease in plasma total cholesterol, non-HDL cholesterol, and 

triglycerides concentrations. Moreover, the levels of HDL cholesterol were 

significantly increased, and PAZ was well tolerated with no notable adverse effects 

[68]. However, the large difference in the lipid profile of treatment versus the control 

group needed more validation. The mechanism of action required further 

investigation as well. Therefore, one of the objectives of the current study was to 

determine the hypolipidemic effects of PAZ and its subfractions. Moreover, the 

research investigated the mechanism by which plasma HDL cholesterol was 

augmented and if the increase can be detected in the hepatic mRNA expression of 

the key genes involved in HDL/RCT metabolism. Further, the plasma metabolomic 

profile was analyzed and correlated with the lipid profile of the hypercholesterolemic 

hamsters.  

The results of the current study corroborate previous findings on plasma 

lipoprotein concentrations upon administration of dietary PAZ [68]. Administration of 

PAZ and its subfractions for 4 weeks as a preventative agent for 

hypercholesterolemia resulted in a significant improvement in plasma lipid profile 

and an alteration in the genes involved in HDL/ RCT metabolism. Results showed a 

highly significant reduction in non-HDL cholesterol and TC/HDL ratio in animals that 

received fraction 3 (HF3 group) and 4(HF4 group), and a moderate decrease in 
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groups HP (non HDL and TC/HDL), HF1 and HF2 (TC/HDL). In addition, the HDL 

cholesterol concentration was significantly increased in HP, HF3, and HF4 groups. 

To confirm the increase in HDL cholesterol plasma concentrations in the treatment 

groups, plasma ultracentrifugation was performed on pooled plasma of all hamsters. 

An increase in the high density portion of cholesterol was observed after TC assay 

was performed on all fractions, confirming the raise in HDL cholesterol plasma 

concentrations.  

An important objective of the study was to explain the improvement in plasma 

lipid profile upon administration of complete PAZ and its subfractions to hamsters 

fed a high fat diet. Evaluation was performed on the genes involved in HDL 

metabolism (Apo A1, ABCA1, SRB1, and CETP) in liver tissues collected from 

hamster. Apo A1 is involved in the production of nascent HDL particles, while 

ABAC1 transports lipids from peripheral tissues to nascent HDL to form larger HDL 

particles. The mature HDL particle is removed via SRB1 receptor on the liver into 

bile, clearance from plasma occurs, and Apo A1 molecule is recycled. CETP 

transfers lipids from HDL to non-HDL particles, and partial inhibition of this enzyme 

is beneficial for lowering cholesterol concentrations in plasma.  Using a real time RT-

PCR technique, we have examined the ability of ProAlgaZyme to transcriptionally 

regulate these genes involved in HDL/RCT metabolism in hepatic tissue.   

Administration of PAZ and its subfraction 4 did alter the ABCA1, APO A1, SRB1 

and CETP hepatic mRNA levels, regulating the transcription of genes that encode 

specific proteins that control cholesterol levels. Transcription of Apo A1, ABCA1, 

SRB1 genes was up-regulated, whereas transcription of the gene encoding CETP 
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was down-regulated after 4 weeks dietary intervention with PAZ and/or its 

subfraction 4. Therefore, high non-HDL cholesterol and TC concentrations, and low 

HDL cholesterol can be treated by up-regulating ABCA1, APO A1, and SRB1, and 

down-regulating CETP expression.   

In summary, the real-time RT-PCR analysis of gene regulation using mRNA from 

hamster liver samples corroborates the changes in lipid plasma profile noted in the 

first part of the study. Therefore, we concluded that the biologically active fraction of 

PAZ is fraction 4, and it was used to complete further aims in the project. The 

composition of fraction 4 is, however uncertain at this point. One-dimensional 1H 

NMR spectroscopy of the sample resulted in a spectrum with major peaks found 

around 1.2- 2.0 ppm, as well as around 7.3 ppm. Current literature describes most 

common classes of secondary metabolites in red and green algae as phytosterols, 

phenylpropanoids and various phenolic compounds [105, 106]. Since the 1H NMR 

spectra also showed prominent peaks in the aromatic regains as well as in the 

region associated with alcohol groups, presence of phenols or phytosterols is 

possible.   

Further, the metabolomic plasma profile of hypercholesterolemic hamsters 

treated with PAZ and fraction 4 was analyzed, using 1H NMR spectroscopy and 

multivariate data analysis. Previous studies identified metabolic perturbations 

associated with abnormal lipoprotein profile, kidney disease associated with type I 

diabetics, insulin resistance, and atherosclerosis using NMR spectroscopy, this 

being a method widely used in the last decade [83, 88]. 
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Plasma includes both high molecular weight proteins and lipoproteins, as well as 

low molecular weight metabolites. Hence, the standard plasma 1-dimentional 1H 

NMR spectrum is dominated by broad resonance peaks of the high molecular weight 

components. The CPMG echo pulse technique was used to suppress the resonance 

from the macromolecules and emphasize the low molecular weight metabolites, thus 

revealing subtle biochemical information of the plasma samples. A clear separation 

of the groups was obtained with the PCA and PLS-DA score plots, showing changes 

in plasma profiles due to the PAZ intervention treatment. To identify the metabolites 

responsible for this strong separation of the groups, PCA loading plot was analyzed 

to identify the unique regions in the spectra that generate this separation. In addition, 

Chenomx NMR Suite software along with the loading, VIP and S plot assisted in 

identification and qualification of the low molecular weight metabolites present.   

It is now well established that a high fat diet is highly correlated with an 

atherogenic outcome. Independent from the effect of a high fat diet on lipid profile, a 

number of recent metabolomic studies have identified abnormalities in branched 

chain amino acids [107], choline, betaine, and TMAO metabolism [108-110] as being 

highly increased in subjects with stable atherosclerosis, heart failure, and other 

cardiovascular diseases.  After screening more than 2000 metabolites from a large 

cohort study (n= 1,876), Wang et al [110] found that a unique cluster of three 

phospholipid-associated molecules, more specifically choline, betaine, and the final 

metabolite, TMAO are linked to CVD risk. It has been shown by Wang et al [110] 

that increased levels of these metabolites promoted up-regulation of several 

macrophage scavenger receptors that correlated with atherosclerosis, making these 
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phospholipid metabolites independent predictors for the risk of a clinical vascular 

event. Even though the key culprits in atherosclerosis remain cholesterol and 

triglycerides, the new findings had shifted the attention of scientists towards 

phosphatidylcholine biosynthesis pathway for additional information related to risk 

for CVD. Plasma levels of choline and betaine are dependent on the 

proatherosclerotic phospholipid-rich diet, and are considered a key risk factor, rather 

than a direct marker of CVD [111]. After quantification of these metabolites in our 

plasma samples, we determined that the group that received the high fat diet and 

the PAZ and/or fractions 4 had significantly lower levels of betaine, choline, 

phosphocholine, glycerol-phosphocholine, as compared with the animals that 

received the high fat diet and water. In addition, the group that received fraction 4 

had a significantly lower concentration of TMAO, demonstrating that the biologically 

active fraction provides enhanced benefits to the hypercholesterolemic animals. 

TMAO was demonstrated to promote accelerated atherosclerosis and has been 

proposed that TMAO induces up-regulation of macrophage scavenger receptors and 

can contribute to augment the “forward cholesterol transport” [112]. 

Another recently studied metabolite that contains a trimethylamine structure 

similar to that of choline is L- carnitine.  Its fundamental role is to transport fatty acids 

into the mitochondrial compartment [112], and it has been associated with potential 

health risk related to CVD [113]. It has been shown that TMAO, and its precursors 

choline and carnitine suppress in vivo reverse cholesterol transport, and elevated 

levels of plasma carnitine in humans are significantly associated with risk for 

coronary artery disease, peripheral artery disease, and overall CVD [114]. Our 
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metabolomics analysis showed a significantly lower plasma concentration of 

carnitine in the group that received fraction 4 as compared with the group that 

received a high fat diet and water. This finding is of extreme importance, as it 

appends to the increase in plasma HDL cholesterol, along with the decrease in non- 

HDL and TC/HDL ratio, all considered contributory factors towards prevention of 

heart disease. 

Furthermore, Aim 3 was designed to examine the therapeutic effect of fraction 4 

in a diet-induced hypercholesterolemic hamster model. More specifically, the 

objective of this study was to determine the efficacy of fraction 4 on plasma lipid and 

metabolomic profile of animals that have been previously induced to a 

hypercholesterolemic state. Also, the aim was to determine the earliest time point at 

which the plasma profile was modified after treatment with fraction 4. Also, this is the 

first study examining the plasma metabolomic profile of hypercholesterolemic 

hamsters treated with fraction 4; therefore it is very important to determine the 

changes in the concentration of small molecular weight metabolites due to fraction 4 

therapeutics and how they correlate with the results from the preventative study.  

The results of this therapeutic investigation reveal an improvement in the plasma 

lipoprotein profile upon administration of fraction 4, showing a significant reduction in 

non-HDL cholesterol and total cholesterol/HDL ratio in all treatment groups, as well 

as a significant increase in plasma HDL cholesterol concentration. In addition, there 

was a moderate (T7, T10, and T14 groups) and a highly significant increase (T21 

group) in the hepatic mRNA levels of Apo A1 gene, which is involved in the 

production of nascent HDL particles. Further, we analyzed the metabolic plasma 
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profile of hypercholesterolemic hamsters treated with the biologically active fraction 

of PAZ, using 1H NMR spectroscopy and multivariate data analysis. A clear 

separation of the groups was obtained with the PCA and PLS-DA score plots, 

showing changes in blood plasma profiles due to therapy with fraction 4. To identify 

the metabolites responsible for this strong separation of the groups, PCA loading 

plot was analyzed to identify the unique regions in the spectra that generate this 

separation. Chenomx NMR Suite software along with the PCA loading, VIP and S 

plots assisted in identification and qualification of important low molecular weight 

metabolites. After quantification of these metabolites in our plasma samples, it was 

noticed that the group that received the high fat diet and fraction 4 for 21 days had 

significantly lower levels of betaine, choline, phosphocholine, and glycerol-

phosphocholine, as compared with the animals that received the high fat diet and 

water. Furthermore, our metabolomics approach showed a significant lower plasma 

concentration of carnitine in the group that received BAF for 21 days as compared 

with the group that received a high fat diet and water.  

The concentration of these metabolites was also altered when PAZ and fraction 4 

were administrated as a preventative agent in hypercholesterolemic hamsters, 

therefore we can suggest that the phosphocholine-containing molecules and their 

pathways are being altered by administration of PAZ and/or BAF. Figure 4.1 

presents an overview of these pathways and the relationship between these 

molecules and lipid metabolism.  

Several researchers investigated the phosphocholine-containing molecules and 

TMAO production and revealed that these molecules are gut-flora-dependent and 
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several pathogens are responsible for the production of TMAO [110, 114, 115]. 

Previous  studies have also shown that the intestinal microbial community can 

influence the efficacy of utilizing energy from the diet, and ultimately increase the 

susceptibility to obesity [116]. More metabolomics studies have demonstrated the 

active role of gut microbiota with the development of complex metabolic aberrations, 

such as insulin resistance and non-alcoholic fatty liver disease [117].  

Using a targeted metabolomics approach, Wang at el [110] and Koeth at el [114] 

identified a novel pathway connecting dietary lipid intake, intestinal microflora and 

atherosclerosis (Figure 4.2). This pathway represents a distinctive additional 

contribution to the pathogenesis of atherosclerosis, demonstrating that gut mirobiota 

engages in the metabolism of phospholipids to yield a molecule (trimethylamine), 

which is further metabolized to TMAO in the host and ultimately contribute to 

formation of atherosclerosis. Thus, the current findings are of extreme importance, 

demonstrating that PAZ and its BAF can alter not only the concentration of important 

phosphocholine-containing molecules, but may also change the gut microbiota 

leading to altered production of TMAO.  

 

 

 



www.manaraa.com

120 
 

 

 

Figure 4.1 Diagram of the Glycerolphosphate Pathway and Phosphatidylcholine 

Synthesis [118] 
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Figure 4.2 Gut-flora Dependent Metabolism of Phosphocholine and Atherosclerosis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

122 
 

 

CONCLUSION 

The present study has shown that dietary administration of PAZ and/or its 

biologically active fraction can improve the plasma lipoprotein profile, hepatic mRNA 

expression of genes involved in HDL/ RCT mechanism, as well as the concentration 

of low molecular weight metabolites in plasma. These modifications were achieved 

when fraction 4 of PAZ was administrated both as a preventative and as a 

therapeutic agent, suggesting the potential benefit of this agent in 

hypercholesterolemia.  

The data suggest that administration of PAZ and the biologically active fraction 

results in a favorable lipoprotein profile in hamsters, primarily due to the effects on 

multiple targets in the reverse cholesterol transport pathway. In addition to improving 

the well known risk factors associated with CVD, the potentially valuable effect of the 

algal infusion on relatively new predictors of atherosclerosis, such as branched chain 

amino acids and the phosphocholine- containing molecules was identified.  

It was also shown that the biologically active fraction can alter the pathway 

linking the phospholipids, intestinal microflora and atherosclerosis. The pro-

atherogenic gut-flora-generated metabolite TMAO was significantly reduced when 

fraction 4 was administrated along with high fat diet as a preventative agent to 

hypercholesterolemic hamsters.  

This study therefore further supports the dietary use of PAZ and/or its biologically 

active fraction for the prevention and management of dyslipidemia-related diseases 

such as cardiovascular disease and metabolic syndrome. Also, this research 

illustrates how the metabolomics approach can drive biomarker discovery and 
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generate new hypothesis for new treatments, opening exciting avenues for future 

research.   
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ABSTRACT 

THE EFFECT OF PROALGAZYME AND ITS SUBFRACTIONS ON LIPID 
METABOLISM IN DIET INDUCED HYPERCHOLESTEROLEMIC HAMSTRES: 

CORREALTION WITH PLASMA METABOLOMIC PROFILE 

by 

ANDREEA GEAMANU 

December 2013 

Advisor: Dr. Smiti Gupta 

Major: Nutrition and Food Science 

Degree: Doctor of Philosophy 

Background: Plasma HDL cholesterol levels are inversely related to 

cardiovascular disease, which is the leading cause of death worldwide. This study 

investigated the preventative effect of an algae infusion, ProAlgaZyme (PAZ) and its 

subfractions (F1, F2, F3, F4) on plasma HDL in a hamster model. Further, the study 

aimed to identify the biologically active fraction of PAZ and to determine the therapeutic 

efficacy of the fraction in diet induced hypercholesterolemic hamsters over time. Also, 

the current study investigated the changes in plasma metabolomic profile produced due 

to the interventions, and correlated the results with the lipoprotein profile of the 

hamsters. 

Methods: Eighty male golden Syrian hamsters (8 weeks old) were randomized 

into controls (CW and CP) or high fat diet (HW, HP, HF1, HF2, HF3, and HF4). During 

the preventative intervention, an infusion of either 5% (HF1, HF2, HF3) or 20% (HP, 

HF4) concentration (v/v) was administered via the drinking water for 4 weeks, while the 

hamsters were being fed a high-fat diet (30% of calories from fat). Plasma lipids were 
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assayed and liver samples subjected to reverse transcription polymerase chain reaction 

(RT-PCR) to determine the relative transcription levels of genes involved in 

HDL/reverse cholesterol transport metabolism, ie, ApoA1, ABCA1, CETP, and SRB1. 

Lipid profile was correlated with plasma metabolomic profile using 1D 1H NMR 

spectroscopy and the biologically active fraction has been identified.  

Further, the study aimed to determine the therapeutic effect of the active fraction 

of PAZ. For this, 40 male Golden Syrian hamsters were fed a high fat diet for 4 weeks 

prior to randomization into 5 groups, based on the number of days they received the 

treatment. Thus animals in T3, T7, T10, T14, and T21 groups received the active 

fraction for 3, 7, 10, 14, and 21 days, respectively, as their drinking fluid. HW group from 

previous study was considered as control (T0, high fat diet and the active fraction for 0 

days) for this study. Plasma lipid profile was assayed enzymatically, while RT-PCR 

provided the alternative transcription levels of Apolipoprotein (Apo) A1 gene. Plasma 

metabolomic profile was determined using 1H nuclear magnetic resonance (NMR) 

spectroscopy and results correlated with the lipid profile of the hamsters. 

Results: Non-HDL cholesterol was significantly reduced in the HP (P < 0.05), 

HF3 and HF4 (P < 0.001) groups as compared with the HW group, while HDL 

cholesterol showed a significant increase in the HP, HF3, and HF4 groups (P < 0.001). 

Moreover, the total cholesterol/HDL ratio was significantly improved in the HP, HF1, and 

HF2 (P < 0.05), and HF3 and HF4 (P < 0.001) groups. Real-time quantitative 

polymerase chain reaction showed a significant increase in hepatic ApoA1 (HP, HF4) 

and ABCA1 (HF3, HF4) expression, consistent with an increase in HDL production, 

biogenesis, and maturation. A two-fold increase in SRB1 expression indicates that HF4 



www.manaraa.com

142 
 

 

further augments the reverse cholesterol transport mechanism. Reduction of CETP 

expression (HF4) is consistent with a decrease in the transfer of cholesteryl ester to 

LDL, further increasing the amount of cholesterol held as HDL particles. NMR 

metabolomics approach showed a significant decrease in the concentration of several 

small molecular weight molecules, including branched chain amino acids and 

phosphocholine-containing molecules, in groups HP and HF4, when compared with HW 

group. Since, F4 exhibited the most influence on plasma lipid and metabolomic profile, it 

was further tested for its therapeutic effect. 

Plasma HDL was significantly increased in T3 (P < 0.05) and T21 (P < 0.001), 

while non-HDL cholesterol was significantly reduced in T3, T7, T10 (P < 0.001) and 

T14, T21 (P < 0.01). Moreover, the total cholesterol/HDL was significantly lower in all 

groups (P < 0.001) as compared with T0. Quantitative RT-PCR showed an increase in 

Apo A1 expression in T10 (3x) and T21 (6x) groups. NMR data followed by multivariate 

analysis showed a clear separation between T0 and T21 groups, indicating a difference 

in their metabolomic profiles. Plasma concentrations of choline, phosphocholine, 

glycerol-phosphocholine, betaine and carnitine metabolites were significantly lowered in 

T21 group. These metabolites are associated with a reduced risk for atherosclerosis 

and cardiovascular disease. 

Conclusion: ProAlgaZyme and its subfractions significantly improved the 

plasma cholesterol profile by lowering non-HDL and increasing HDL, possibly via the 

reverse cholesterol transport mechanism. Also, the concentration of several pro-

atherogenic small molecular weight metabolites has been decreased, indicating that 

PAZ and F4 can be used as a preventative agent for hypercholesterolemia and 
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atherosclerosis.  Moreover, treatment with F4 also significantly improved plasma lipid 

profile by increasing HDL and lowering non-HDL cholesterol, and reducing key risk 

factor metabolites for atherosclerosis and cardiovascular disease.  
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